• Title/Summary/Keyword: Oxolinic acid

Search Result 71, Processing Time 0.028 seconds

Determination of Oxolinic Acid Residues in Acetes japonicus by HPLC (보리새우에 잔류하는 Oxolinic Acid HPLC를 이용한 검출법)

  • 이문한;임재영;정순관;손성완;박종명
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.3
    • /
    • pp.147-150
    • /
    • 1993
  • A novel rapid and sensitive method to detennine residual oxolinic acid in Acetes japonicus was developed. The residual oxolinic acid was extracted with ethylacetate and diluted oxalic acid, and interfering substances were removed by hexane. Fifty ppb residual concentration in the extract could be quantitated by UV-HPLC and the recovery rates were 79-91% according to the fortified amounts.

  • PDF

Oxolinic acid Residue in the cultured Eel Tissues and its Change to Heating Process (시판중인 뱀장어중의 Oxolinic acid 잔류량과 가열에 의한 변화)

  • 김경호;송미란;최선남;최민순;박관하
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.1
    • /
    • pp.14-19
    • /
    • 1998
  • The residual tissue concentraion of the widely used aquatic antibacterial agent, oxolinic acid, was surveyed in eels collected from fish markets of Chonbuk Province, Korea. Their concentrations in the dorsolateral muscle were widely varying. In about 32% of samples examined, oxolinic acid was not detected. In about 16% of those samples in which oxolinic acid was detected, the concentration was above 0.1 ppm. The tissue distrubution of the agent in major organs was in the rank order of kidney>liver>plasma>muscle. When the muscle samples which contained residual oxolinic acid were baked for up to 10 min, there was no change in the drug concentration. Their concentration declined to about 50% by baking for 30 min at which time the tissue turned to the texture of charcoal. The extreme stability of oxolinic acid to heating process was confirmed with muscle samples from eels to which a high dose of oxolinic acid was administered, and also with an aqueous oxolinic acid solution of known concentration. It is suggested that an effective regulatory measure should be initiated to keep eel consumers from residual oxolinic acid impact.

  • PDF

Analysis of Oxolinic Acid in Fish Products Using HPLC (HPLC를 이용한 어류 중의 Oxolinic Acid 분석)

  • LEE Hee Jung;LEE Tae Seek;SON Kwang Tae;KIM Poong Ho;JO Mi Ra;PARK Mi Jung;Yi Young Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.6
    • /
    • pp.379-384
    • /
    • 2005
  • A high-performance liquid chromatography assay method for oxolinic acid in fish products was developed, evaluated and validated through the monitoring of oxolinic acid based on farming and distribution. The recovery rate of the developed method was $102.3-106.7\%$ as compared to conventional methods. The stock solution was stable for 3 weeks under refrigerated condition at $4^{\circ}C$ The performance limit was evaluated as 0.01ppm of oxolinic acid in fish muscle. 478 fish samples such as olive flounder, genuine porgy, common sea bass and black rock fish collected from fish farms in the coastal area from September 2001 to October 2004 were analyzed to evaluate overall efficiency of the modified method and to monitor the actual condition of oxolinic acid usage in fish farm. According to the monitoring results, the modified method was suitable for analysis of oxolinic acid in fish muscle and oxolinic acid might be used in a small portion of fish farms. The suggested analysis method of oxolinic acid was registered in the Korean Official Methods of Food Analysis and is being utilized for fishery products by the Korea Food and Drug Adminstration and the National Fisheries Products Quality Inspection Service.

Assessment of the Residues of Benfuresate and Oxolinic Acid in Crops (Benfuresate와 Oxolinic Acid의 작물체중 잔류량 평가)

  • Park, Dong-Sik;Yang, Jae-E.;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.312-318
    • /
    • 1995
  • Residues of benfuresate in rice and oxolinic acid in Chinese cabbage were determined through the field experiments in order to establish the safe use and the maximum residue limit(MRL) of these pesticides in Korea. The herbicide benfuresate powder was sprayed into the paddy field with a level of 0.6kg(active ingredient)/ha and rice (Oryza sativa L.) was grown. At harvest, residues of benfuresate in brown rice and stem were analyzed using gas chromatograph. The residue of oxolinic acid in Chinese cabbage (Brassica campestris subsp. napus var pekinesis MAKINO) was analyzed using HPLC after foliar-spraying this fungicide into the cabbages at a level of 15kg/ha. The recovery efficiencies of benfuresate and oxolinic acid were 87-89% and 90-95%, respectively. The respective residues of benfuresate in rice and oxolinic acid in Chinese cabbage were in the range of 0.27-0.46 mg/kg and 0.23-1.53kg/kg. Residual concentrations of these pesticides in crops increased with the increased application frequencies, followed the first-order kinetics and linearly decreased with time. The highest residue of 1.53 mg/kg of oxolinic acid was observed when this fungicide was sprayed six times until three days prior to harvest, but this level was far lower t㏊n 5 mg/kg, which is the maximum residue limit(MRL) set by FAO/WHO.

  • PDF

Determination of Oxolinic Acid in Paddy Soil by HPLC Coupled with UV Detector (HPLC-UV검출기를 이용한 논토양 중 oxolinic acid 분석)

  • Lo, Seog-Cho;Ma, Sang-Yong;Han, Seong-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.303-310
    • /
    • 2005
  • This study was performed to examine analytical method of a quinolone compound, oxolinic acid in paddy soil by HPLC coupled with UV detector. Two types of soil texture in different regions were used for this experiment. Oxolinic acid was extracted by a 4 M-KOH : MeOH(1 : 3, v/v) mixtures and acidified followed by liquid-liquid partitioning in dichloromethane. Dichlormethane layer was dehydrated, evaporated and analyzed by HPLC (262 nm). Retention time was 10.2 min. The standard calibration curve of oxolinic acid showed linearity ($r^2>0.999^{**}$, y=378.99x+135.08) in the range of $1{\sim}40$ ng. The mean recoveries, evaluated from fortified soil samples at two concentration levels of 0.2 mg/kg and 1.0 mg/kg, were $90.9{\pm}4.52%$(C.V. 4.97%) and $95.0{\pm}0.23%$(C.V. 0.24%) for soil 1 and $92.2{\pm}1.15%$(C.V. 1.25%) and $93.1{\pm}0.31%$ (C.V. 0.33%) for soil 2, respectively The detection limits of two types of soils were same as 0.05 ppm. Overall, the present analytical method of oxolinic acid by HPLC coupled with UV detector seems to be used reasonably.

Effective Control Strategy against Bacterial Blight on Carrot (당근 세균잎마름병에 대한 효과적 방제 수단)

  • Hyun Su Kang;Mi-Jin Kim;Yong Ho Shin;Yong Chull Jeun
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.405-413
    • /
    • 2023
  • Bacterial blight of carrot caused by Xanthomonas hortorum pv. carotae (Xhc) is one of the serious diseases of carrot, of which control measures has not been still established in the domestic farm. In this study, in order to select effective sterilizer for bacterial blight of carrots, three antibiotics such as streptomycin, oxolinic acid, kasugamycin, two copper compounds like copper hydroxide and copper sulfate basic and three rhizobacteria Burkholderia gladioli MRL408-3, Pseudomonas fluorescens TRH415-2 and Bacillus cereus KRY505-3 were selected to investigate their direct antibacterial effects using artificial media, aiming to identify effective pesticides against Xhc. Among them, treated medium with antibiotics such as streptomycin, oxolinic acid, and the antagonistic rhizobacteria MRL408-3 were formed inhibition zone. The agrochemicals and the rhizobacteria MRL408-3, which showed antibacterial effects on carrot leaves, pre-treated on the carrot leaves and then inoculated with Xhc. High control effects were shown on the carrot leaves pre-treated with both streptomycin and oxolinic acid. Scanning electron microscopy images of the carrot leaf surfaces showed that the population of bacteria decreased significantly on leaves pre-treated with streptomycin and oxolinic acid. From these results, it can be inferred that antibiotics like streptomycin and oxolinic acid exhibit superior control effects compared to other agents. This study provides valuable insights towards establishing an effective control system for bacterial blight of carrot.

Effects of Oxolinic Acid on Microbial Community under Simulated Marine Fish Farm Environment (해산어 양식환경하의 미생물군집에 대한 옥소린산의 영향)

  • Yoon Duk-Hyun;Kim Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.89-98
    • /
    • 2006
  • The microbial response after treatment of antibiotics was studied for investigating the resistance pattern under simulated aquaculture environment. A marine microcosm was developed for marine fish farm environment using artificial seawater and sediment. Oxolinic acid, which has been commonly used in aquaculture, was employed for the experiment. Resistance patterns and the changes of microbial community were monitored before. during and after use of oxolinic acid. Vibrionaceae was the dominant bacterial species throughout the experiment, consisting 65-75% of total bacterial number in fish farm environment. However, some gram-positive bacteria, Micrococcos sp. and Bacillus sp. strains in marine farm environment were increased in proportion to their number during the treatment. ETS activity of the bacterial communities in aquaculture environment was reduced to 42-67% during the treatment of oxolinic acid. But recovering trends of bacterial number were also detected immediately after cease of oxolinic acid treatment. Frequent treatment of oxolinic acid under the simulated fish farm environment showed bacterial resistance to increase sharply.

  • PDF

Chemical control of potato Blackleg disease caused by Erwinia carotovora subsp. atroseptica in Korea (감자 흑각병원균 Erwinia carotovora subsp. atroseptica의 화학적 방제)

  • Yu, Yong-Man;Zhu, Yong-zhe;Bae, Hu-Nam;Kim, Song-Mum;Lim, Chun-Keum;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.12-17
    • /
    • 2003
  • Potato blackleg disease caused by Erwinia carotovora subsp. atroseptica (Eca) has been a serious problem in Korea. Bactericidal activities of twelve bactericides including antibiotics, copper compounds and oxolinic acid were examined in vitro. Streptomycin, streptomycin sulfate, and oxolinic acid effectively controlled the pathogen at 0.02 mM. However, the pathogen developed resistance to the applied bactericides after 72 hours of incubation. Activity of copper compounds such as copper hydroxide, copper oxide and copper sulfate was lower than that of antibiotics. However, the pathogen did not develop resistant to them. Combinations of streptomycin (0.016 mM, 9.3 ppm) + copper oxide (1.2 mM, 171.6 ppm)/copper hydroxide (1.5 mM, 146.3 ppm); streptomycin sulfate (0.005 mM, 7.0 ppm) + copper oxide (1.2 mM, 171.6ppm)/copper hydroxide (1.5 mM, 146.3 ppm) were found to be effective for the control of E. carotovora subsp. atroseptica.

The Residues of Antibiotics (Tetracycline, Oxolinic Acid and Ciplofloxacin) and Malachite Green in Cultured Rainbow Trout (양식산 무지개송어에서의 항생제와 말라카이트 그린 잔류량 조사)

  • Kim, Young-Mog;Lee, Myung-Suk;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.828-835
    • /
    • 2013
  • Products from aquaculture have sometimes been focused on the problems caused by the contamination of chemical agents as the use of chemical agents in aquaculture has been annually increased. The risk of contamination of products by chemical agents is greater in freshwater than in seawater. In order to evaluate the food safety of a fish grown in freshwater, we investigated the residues of antibiotics (tetracycline, oxolinic acid and ciplofloxacin) and malachite green in cultured rainbow trout, Oncorhynchus mykiss. Malachite green, which was prohibited in the application of aquaculture, was not detected in samples tested in this study. The residual content of tetracycline was determined to be less than the permissible amount, <0.2 mg/kg. The contents of ciplofloxacin was also less than the permissible amount, <0.1 mg/kg. However, in case of oxolinic acid, one of samples was only exhibited higher content than the permissible amount (<0.1 mg/kg). The results obtained in this study suggested that the control and regulation of chemical agents such as antibiotics was important to maintain a safe and worry-free seafood supply.

Effects of Suspended Solids, pH and Salinity on the Chemical Fate of Oxolinic Acid in the Aquatic Environment (해양환경에서 부유물질, 염분 및 pH의 옥소린산 화학적 거동에 미치는 영향)

  • Yoon Duk-Hyun;Kim Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.99-106
    • /
    • 2006
  • The fate of chemical pollutants in the aquatic environment is generally considered to be strongly influenced by environmental factors such as pH, salinity and electrostatic charges on the surface of particles ai well as by the characteristic of chemicals. Oxolinic acid was measured by chemical analysis using HPLC to determine the effect of salinity, pH and suspended solids on chemical binding and by bioassay for measuring bioactivity. The higher contentration of suspended solids in the medium, the lower concentration of oxolinic and was detected in measurements from by both HPLC and biosssay analysis. This indicates particle may have a stronger binding or absorption effect on oxolinic acid. Bioassay analysis showed weaker bioacivity at higher salinity and pH 7.0, but this result of bioassay analysis was different from the result of HPLC.

  • PDF