• 제목/요약/키워드: Oxidizing exhaust gas

검색결과 14건 처리시간 0.027초

Effect of Hydrocarbon Additives on SNCR DeNOx Characteristics under Oxidizing Diesel Exhaust Gas Conditions

  • Nam, Changmo
    • 한국환경과학회지
    • /
    • 제27권10호
    • /
    • pp.809-820
    • /
    • 2018
  • DeNOx experiments for the effects of hydrocarbon additives on diesel SNCR process were conducted under oxidizing diesel exhaust conditions. A diesel-fueled combustion system was set up to simulate the actual cylinder and head, exhaust pipe and combustion products, where the reducing agent $NH_3$ and $C_2H_6/diesel$ fuel additives were separately or simultaneously injected into the exhaust pipe, used as the SNCR flow reactor. A wide range of air/fuel ratios (A/F=20~40) were maintained, based on engine speeds where an initial NOx level was 530 ppm and the molar ratios (${\beta}=NH_3/NOx$) ranged between 1.0~2.0, together with adjusting the amounts of hydrocarbon additives. Temperature windows were normally formed in the range of 1200~1350K, which were shifted downwards by 50~100K with injecting $C_2H_6/diesel$ fuel additives. About 50~68% NOx reduction was possible with the above molar ratios (${\beta}$) at the optimum flow #1 ($T_{in}=1260K$). Injecting a small amount of $C_2H_6$ or diesel fuel (${\gamma}=hydrocarbon/NOx$) gave the promising results, particularly in the lower exhaust temperatures, by contributing to the sufficient production of active radicals ($OH/O/HO_2/H$) for NOx reduction. Unfortunately, the addition of hydrocarbons increased the concentrations of byproducts such as CO, UHC, $N_2O$ and $NO_2$, and their emission levels are discussed. Among them, Injecting diesel fuel together with the primary reductant seems to be more encouraging for practical reason and could be suggested as an alternative SNCR DeNOx strategy under diesel exhaust systems, following further optimization of chemicals used for lower emission levels of byproducts.

산화촉매에 의한 자동차 배출가스중 HC 및 CO의 정화에 관한 실험적 연구 (An experimental study on emission control of HC and CO due to oxidizing catalyst)

  • 한영출;최규훈
    • 오토저널
    • /
    • 제3권1호
    • /
    • pp.46-53
    • /
    • 1981
  • This paper describes emission control of hydrocarbon and carbon-monoxide due to oxidizing catalyst. The experiment was performed on a precious metal pelleted catalyst(Pt). The factors of the efficiency for purification due to oxidizing catalyst are space velocity, temperature, composition of exhaust gas and supplementary air. The experiment was carried out to control the factors of efficiency for purification. The results of experimental study show that temperature of catalytic converter, supplementary air and space velocity affected the efficiency for purification of hydrocarbon and carbon monoxide.

  • PDF

산화촉매에 의한 대형디젤엔진의 배출가스 정화 특성 - Reactor 실험을 중심으로 - (Characteristics of Exhaust Emission Reduction of Heavy Duty Diesel Engine by Oxidation Catalyst - Reactor Test -)

  • 조강래;김용우;김희강
    • 한국대기환경학회지
    • /
    • 제14권4호
    • /
    • pp.313-320
    • /
    • 1998
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidibing CO and HC effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing CO and HC and also to have high activity for the oxidation of sulfur dioxide (SO2) to sulfor trioxide (SO3). There is a need to develop a highly selective catalyst which can promote the oxidation of CO and HC efficiently, but, on the other hand, suppress the oxidation of SO2. One approach to solve this problem is to load a base metal such as vanadium in Pt-based catalyst to suppress sulfate formation. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated catalyst in a laboratory reactor by changing the formulations and reaction temperatures.

  • PDF

K-Mn/Fe2O3 촉매 상 H2O2 분해에 의한 건식산화제 생성 및 모사 배가스 유량에 따른 NO 산화공정 (A study on production of dry oxidant by decomposition of H2O2 on K-Mn/Fe2O3 catalyst and NO oxidation process according to simulated flue gas flow)

  • 최희영;신우진;장정희;한기보
    • 한국응용과학기술학회지
    • /
    • 제34권2호
    • /
    • pp.367-375
    • /
    • 2017
  • 본 연구에서는 배가스 내 존재하는 오염물질인 NO의 처리효율을 증대시키기 위하여 NO 산화공정을 연구하였으며, 강력한 산화력의 건식산화제를 제조하는 방법으로 $H_2O_2$ 촉매분해가 도입되었다. $H_2O_2$ 분해공정 상에서 적용 가능한 $K-Mn/Fe_2O_3$ 불균일계 촉매가 제조되었으며, 이들이 가지는 물리화학적 특성이 $H_2O_2$ 분해반응에 미치는 영향이 조사되었다. 제조된 건식산화제는 NO가 포함된 모사 배가스를 처리하기 위한 NO 산화공정에 적용되었으며, 다양한 모사 배가스의 유량(5, 10, 20 L/min)에서 약 100% 가까운 NO 전환율을 확인 하였다.

촉매에 의한 가솔린 기관배기중 CO와 HC 농도저감에 관한 실험적 연구 (Experimental study on the reduction of CO and HC concentrations in the exhaust gas of gasoline engine by catalysts)

  • 조진호;서정일;조종철
    • 오토저널
    • /
    • 제4권1호
    • /
    • pp.46-55
    • /
    • 1982
  • When an oxidizing catalytic converter which makes use of platium as a catalyst is employed by means if emission control of CO and HC gasoline engine, the effects of important factors for the purification efficiency, i.e engine speed and secondary air rate, on the reduction of CO and HC concentrations in the exhaust gas are studied experimentally. In the experiment, gasoline and LPG are used as a fuel, and the purification efficiency is examined and the results of both cases are compared with each other. The experimental results showed that the purification efficiency in the case of LPG is usually higher than that of gasoline, and the optimum values of engin speed and secondary air rate for maximum purification efficiency exist in common on both cases.

  • PDF

디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능 (Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine)

  • 박철웅;김창기;최영;강건용
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

경유 중 황이 산화촉매 장착 디젤엔진의 입자상 물질에 미치는 영향 (The Effect of Fuel Sulfer on Particulate Matter of Diesel Engine Equipped with Oxidation Catalyst)

  • 조강래;신영조;류정호;김희강
    • 한국대기환경학회지
    • /
    • 제13권6호
    • /
    • pp.487-495
    • /
    • 1997
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidizing CO, HC and SOF effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing SOF and also to have high activity for the oxidation of sulfur dioxide $(SO_2)$ to sulfur trioxide $(SO_3)$. There is a need to develop a highly selective catalyst which can promote the oxidation SOF efficiently, on the other hand, suppress the oxidation of $SO_2$. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated ceramic monolith substrate. A prepared Pt-V catalytic converter was installed on a heavy duty diesel engine and the effect of fuel sulfur on particulate matter (PM) of heavy duty diesel engine was measured. The effect of fuel sulfur on PM of Pt-V was also compared with that of a commercialized Pt catalyst currently being used in some of the heavy duty diesel engines in advanced countries. Only 1 $\sim$ 3% of sulfur in the diesel fuel was converted to sulfate in PM for the engine without catalyst, but almost 100% of sulfur conversion was achieved for the engine with Pt catalyst at maximum loading condition. In the case of Pt-V catalyst, there was no big difference in conversion with the base engine even at maximum loading condition. The reason of SOF increase according to the increase of suflate emission was identified as the washing off effect of bound water in sulfate.

  • PDF

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • 한국재료학회지
    • /
    • 제34권5호
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.

악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발 (Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive)

  • 정완영;심창현
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템 (Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile)

  • 정완영;이승철
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.