• 제목/요약/키워드: Oxidized protein

검색결과 160건 처리시간 0.025초

과체중 이상 성인에서 혈중 콜레스테롤 수준에 따른 영양소 섭취량, 혈중 산화 및 염증 관련 지표에 관한 연구 (A Study on Blood Lipid Levels, Nutrient Intakes, and Oxidation and Inflammation Markers of Overweight and Obese Adults according to Blood Cholesterol Levels in Korea)

  • 연지영;김미현
    • 한국식품영양학회지
    • /
    • 제24권1호
    • /
    • pp.1-11
    • /
    • 2011
  • This study was designed to investigate the relationships among blood lipid levels, nutrient intakes, oxidation and inflammation markers of overweight adults(23$\leq$BMI<25) and obese(BMI$\geq$25) in Korea. The subjects were classified as control, borderline hyperlipidemia. and hyperlipidemia groups based on The Korean Guidelines of Hyperlipidemia Treatment for the Prevention of Atherosclerosis. The study was conducted through questionnaires, anthropometric checkups, 2-days of 24 hr recalls, and blood biomarker analyses. Systolic blood pressure(SBP) was significantly increased in the hyperlipidemia group(p=0.0464). Intakes of nutrients were not significantly different among the three groups. Blood oxidized-LDL levels were significantly increased in the hyperlipidemia group(p<0.0001). Blood triglyceride(TG) levels were positively associated with BMI(p=0.0498), SBP(p=0.0158), and diastolic blood pressure(DBP; p=0.0076). Blood total cholesterol levels were positively associated with SBP(p=0.0005), and blood HDL-cholesterol levels were negatively associated with body fat (p=0.0408). Blood LDL-cholesterol levels were negatively associated with height(p=0.0207), and blood VLDL-cholesterol levels were positively associated with SBP(p=0.0011) and DBP(p=0.0490). Intakes of protein(p=0.0257) and dietary fiber (p=0.0094) were positively associated with blood HDL-cholesterol levels. Frap levels were positively associated with TG levels(p=0.0001) and VLDL-cholesterol levels(p=0.0077). Oxidized-LDL levels were positively associated with LDL-cholesterol levels(p=0.0135). These results suggest that oxidation and inflammation markers may be related to hypercholesterolemia progress, and dietary fiber intake may play a role in preventing hyperlipidemia in overweight and obese adults.

Oxidized Carbon Nanosphere-Based Subunit Vaccine Delivery System Elicited Robust Th1 and Cytotoxic T Cell Responses

  • Sawutdeechaikul, Pritsana;Cia, Felipe;Bancroft, Gregory J.;Wanichwecharungruang, Supason;Sittplangkoo, Chutamath;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.489-499
    • /
    • 2019
  • Subunit vaccines are safer and more stable than live vaccines although they have the disadvantage of eliciting poor immune response. To develop a subunit vaccine, an effective delivery system targeting the key elements of the protective immune response is a prerequisite. In this study, oxidized carbon nanospheres (OCNs) were used as a subunit vaccine delivery system and tuberculosis (TB) was chosen as a model disease. TB is among the deadliest infectious diseases worldwide and an effective vaccine is urgently needed. The ability of OCNs to deliver recombinant Mycobacterium tuberculosis (Mtb) proteins, Ag85B and HspX, into bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) was investigated. For immunization, OCNs were mixed with the two TB antigens as well as the adjuvant monophosphoryl lipid A (MPL). The protective efficacy was analyzed in vaccinated mice by aerosol Mtb challenge with a virulent strain of Mtb and the bacterial burdens were measured. The results showed that OCNs are highly effective in delivering Mtb proteins into the cytosol of BMDMs and BMDCs. Upon immunization, this vaccine formula induced robust Th1 immune response characterized by cytokine profiles from restimulated splenocytes and specific antibody titer. More importantly, enhanced cytotoxic $CD8^+$ T cell activation was observed. However, it did not reduce the bacteria burden in the lung and spleen from the aerosol Mtb challenge. Taken together, OCNs are highly effective in delivering subunit protein vaccine and induce robust Th1 and $CD8^+$ T cell response. This vaccine delivery system is suitable for application in settings where cell-mediated immune response is needed.

A plant-based multivitamin, multimineral, and phytonutrient supplementation enhances the DNA repair response to metabolic challenges

  • Yeo, Eunji;Hong, Jina;Kang, Seunghee;Lee, Wonyoung;Kwon, Oran;Park, Eunmi
    • Journal of Nutrition and Health
    • /
    • 제55권4호
    • /
    • pp.450-461
    • /
    • 2022
  • Purpose: DNA damage and repair responses are induced by metabolic diseases and environmental stress. The balance of DNA repair response and the antioxidant system play a role in modulating the entire body's health. This study uses a high-fat and high-calorie (HFC) drink to examine the new roles of a plant-based multivitamin/mineral supplement with phytonutrients (PMP) for regulating the antioxidant system and cellular DNA repair signaling in the body resulting from metabolic stress. Methods: In a double-blind, randomized, parallel-arm, and placebo-controlled trial, healthy adults received a capsule containing either a PMP supplement (n = 12) or a placebo control (n = 12) for 8 weeks. Fasting blood samples were collected at 0, 1, and 3 hours after consuming a HFC drink (900 kcal). The blood samples were analyzed for the following oxidative stress makers: areas under the curve reactive oxygen species (ROS) levels, plasma malondialdehyde (MDA), erythrocytes MDA, urinary MDA, oxidized low-density lipoprotein, and the glutathione:oxidized glutathione ratio at the time points. We further examined the related protein levels of DNA repair signaling (pCHK1 (Serine 345), p-P53 (Serine 15), and 𝛄H2AX expression) in the plasma of subjects to evaluate the time-dependent effects of a HFC drink. Results: In a previous study, we showed that PMP supplementation for eight weeks reduces the ROS and endogenous DNA damage in human blood plasma. Results of the current study further show that PMP supplementation is significantly correlated with antioxidant defense. Compared to the placebo samples, the blood plasma obtained after PMP supplementation showed enhanced DNA damage response genes such as pCHK1(Serine 345) (a transducer of DNA response) and 𝛄H2AX (a hallmark of DNA damage) during the 8 weeks trial on metabolic challenges. Conclusion: Our results indicate that PMP supplementation for 8 weeks enhances the antioxidant system against oxidative stress and prevents DNA damage signaling in humans.

수산가공공장폐액의 등전점이동 응집처리에 의한 유용성분재회수이용;4. 회수단백질의 어분 대체 사료로서의 이용 (Recovery and Utilization of Proteins and Lipids from the Washing Wastewater in Marine Manufacture by Isoelectric Point Shifting Precipitation Method;4. Utilization of the Recovered Protein Fractions as the Alternative Feed of Fish Meal.)

  • 김광우;김가현;어명희;김옥선;조순영
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.832-838
    • /
    • 2008
  • 수산가공공장폐액의 주성분은 수용성단백질이며 일부 지방이 함유되어 있는 특성이 있으므로 그 수용성 단백질을 등전점 침전처리에 의해 침전회수하여 어분 대체 사료로서의 이용을 시도하였다. 1차 이스라엘잉어 사육 실험에서는 지방 산화가 진행된 고등어가공공장폐액으로 제조 된 고등어가공공장폐액 회수단백질 어분의 첨가량이 증가할수록 사료효율이 떨어지는 결과를 보였으나, 이 산화된 고등어가공폐액 회수단백질의 산화된 지방성분을 제거한 후 다시 2차 이스라엘 잉어 사육 실험을 한 결과에서는 고등어가공폐액 회수단백질의 첨가량이 증가할수록 사료효율이 좋음을 확인하였다. 따라서, 지금까지 버려지는 고등어가공공장폐액 중 수용성단백질을 등전점이동 응집처리법으로 회수하여 어분 대체 단백질원으로 활용할 수 있음을 실제 field에서의 이스라엘 잉어 사육 실험으로 확인할 수 있었다.

Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen;Xiao, Wenjun;Ren, Guopu;Zhou, Daowei;Tan, Chuanyan;Tan, Zhiliang;Han, Xuefeng;Tang, Shaoxun;Zhou, Chuanshe;Wang, Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권12호
    • /
    • pp.1681-1689
    • /
    • 2011
  • The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.

인체 혈장에서 분리한 LDL과 LDL의 지방산 조성과 기능성의 변화 (Fatty Acid Composition and Functional Properties of Low Density Lipoprotein and Oxidized LDL from Human Plasma)

  • Jae-Hoon Choi;Hyun-Mi Cho;Heung-Soo Son;Tae-Woong Kim
    • 한국식품영양과학회지
    • /
    • 제23권3호
    • /
    • pp.402-408
    • /
    • 1994
  • 인체의 혈장 저밀도 지단백(LDL)은 관상동맥경화 발병의 주 요인이다. 그러나 최근의 연구들은, 정상적인 LDL은 산소 자류라디칼에 의해 쉽게 산화되며, 결과 LDL 수용채와 결합하지 못한다고 밝히고 있다. 따라서 이 변형된 형태의 산화된 LDL은 macrophage scavernger receptor에 의해 인식되어 foam cell을 형성하여, 동맥혈관이 좁아지는 역할을 수행한다고 알려지고 있다. 지리과 산화에는 지방산이 중요한 작용을 하므로, 한국인의 LDL의 지방산 조성을 분석하여 서양인과 비교하였다. 결과, 한국인의 불포화 지방산의 비율이 총 지방산 함량의 약 30%인 반면 서양인은 약 70%의 분포를 갖고 있는 것으로 발표되었다. 따라서 한국인이 서양인에 비해 LDL의 산화에 대한 영향을 적게 받을 수 있으며, 따라서 동맥경화나 심장병의 발생률이 훨씬 적을 것으로 결론을 내릴 있다. 정상적인 LDL을 황산구리와 함께 배양하여, 지방의 산화를 유도하였으며 이의 정도를 지방산 산화의 생성물인 TBARS를 측정하여, LDL이 산화될 때 생성되는 자유라디칼의 양을 측정하므로서 비교하였다. 이 때, 항상화제인 비타민 C; 비타민 E와 히알우로닉산을 첨가하면 LDL의 산화가 억제되는 효과를 확인하였다. 자유 라디탈이 증가함에 따라 산화의 정도도 증가하였으며, 자유라디칼 형성의 경시적 변화는 TBARS와 유사하였다. 따라서 luminometer에 의한 자유라디칼의 정량은 TBARS에 의한 것보다 훨씬 간편한 것으로 나타났다.

  • PDF

Recombinant Human Thioredoxin-1 Protects Macrophages from Oxidized Low-Density Lipoprotein-Induced Foam Cell Formation and Cell Apoptosis

  • Zhang, Hui;Liu, Qi;Lin, Jia-Le;Wang, Yu;Zhang, Ruo-Xi;Hou, Jing-Bo;Yu, Bo
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.121-129
    • /
    • 2018
  • Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and apoptosis play critical roles in the pathogenesis of atherosclerosis. Thioredoxin-1 (Trx) is an antioxidant that potently protects various cells from oxidative stress-induced cell death. However, the protective effect of Trx on ox-LDL-induced macrophage foam cell formation and apoptosis has not been studied. This study aims to investigate the effect of recombinant human Trx (rhTrx) on ox-LDL-stimulated RAW264.7 macrophages and elucidate the possible mechanisms. RhTrx significantly inhibited ox-LDL-induced cholesterol accumulation and apoptosis in RAW264.7 macrophages. RhTrx also suppressed the ox-LDL-induced overproduction of lectin-like oxidized LDL receptor (LOX-1), Bax and activated caspase-3, but it increased the expression of Bcl-2. In addition, rhTrx markedly inhibited the ox-LDL-induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38 mitogen-activated protein kinases (MAPK). Furthermore, anisomycin (a p38 MAPK activator) abolished the protective effect of rhTrx on ox-LDL-stimulated RAW264.7 cells, and SB203580 (a p38 MAPK inhibitor) exerted a similar effect as rhTrx. Collectively, these findings indicate that rhTrx suppresses ox-LDL-stimulated foam cell formation and macrophage apoptosis by inhibiting ROS generation, p38 MAPK activation and LOX-1 expression. Therefore, we propose that rhTrx has therapeutic potential in the prevention and treatment of atherosclerosis.

Thermus thermophilus HJ6 유래 내열성 laccase의 유전자 클로닝 및 효소학적 특성 (Gene Cloning and Enzymatic Properties of Thermostable Laccase from Thermus thermophilus HJ6)

  • 이소영;정영훈;서민호;전숭종
    • KSBB Journal
    • /
    • 제27권4호
    • /
    • pp.257-262
    • /
    • 2012
  • The gene encoding Thermus thermophilus HJ6 laccase (Tt-laccase) was cloned, sequenced, and comprised of 1,389 nucleotides encoding a protein (462 amino acids) with a predicted molecular mass of 51,049 Da. The deduced amino acid sequence of Tt-laccase showed 99.7% and 44.3% identities to the Thermus thermophilus HB27 laccase and Synechococcus sp. RS9917 laccase, respectively. Tt-laccase gene was expressed as a fusion protein with six histidine residues in E. coli Rosetta-gami (DE3) cells, and the recombinant protein was purified to homogeneity. UV-Vis spectrum analysis revealed that the enzyme has copper atoms, a type I Cu(II) and a type III binuclear Cu(II). The optimum pH for the oxidation of guaiacol was 5.0 and the optimum temperature was $90^{\circ}C$ The half-life of heat inactivation was about 120 min at $90^{\circ}C$ The enzyme reaction was inhibited by sodium azide, L-cystein, EDTA, dithiothreitol, tropolone, and kojic acid. The enzyme oxidized various known laccase substrates, its lowest $K_m$ value being for 4-hydroxyindole, highest $k_{cat}$ value for syringaldazine, and highest $k_{cat}/K_m$ for guaiacol.

Purification and Characterization of a Laccase from the Edible Wild Mushroom Tricholoma mongolicum

  • Li, Miao;Zhang, Guoqing;Wang, Hexiang;Ng, Tzibun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권7호
    • /
    • pp.1069-1076
    • /
    • 2010
  • A novel laccase from Tricholoma mongolicum was purified by using a procedure that entailed ion-exchange chromatographies on DEAE-cellulose, CM-cellulose, and Q-Sepharose, and FPLC-gel filtration on Superdex 75. The purified enzyme was obtained with a specific activity of 1,480 U/mg-protein and a final yield of 15%. It was found to be a monomeric protein with a molecular mass of 66 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its N-terminal amino acid sequence was GIGPVADLYVGNRIL, similar to some but also different to other mushroom laccases. The optimum pH and temperature for the purified enzyme were pH 2 to pH 3 and $30^{\circ}C$, respectively. It displayed a low $K_m$ toward 2,7-azinobis (3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) and high $k_{cat}/K_m$ values. The purified laccase oxidized a wide range of lignin-related phenols, but exerted maximal activity on ABTS. It was significantly inhibited by $Hg^{2+}$ ions, and remarkably stimulated by $Cu^{2+}$ ions. It inhibited HIV-1 reverse transcriptase and proliferation of hepatoma HepG2 cells and breast cancer MCF7 cells with an $IC_{50}$ of 0.65 ${\mu}M$, 1.4 ${\mu}M$, and 4.2 ${\mu}M$, respectively, indicating that it is also an antipathogenic protein.

S-Thiolation and Oxidation of Glycogen Phosphorylase b and Peroxidation of Liposome Initiated by Free Radical Species

  • Lee, Kyu-Sun;Lee, Hyung-Min;Park, Young-Mee;Chang, Byeong-Doo;Chung, Tae-Young;Choi, Eun-Mi
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.81-87
    • /
    • 1996
  • The relationship of S-thiolation and oxidation of glycogen phosphorylase b and peroxidation of phosphatidyl choline liposome by xanthine oxidase (XOD), 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH), and 2,2'-azobis(dimethylvaleronitrile) (AMVN)-generated free radicals was investigated, Glycogen phosphorylase b was S-thiolated in the presence of glutathione and oxidized in the absence of it by XOD, AAPH and AMVN. In XOD-initiated reaction, the rates of S-thiolation and oxidation of phosphorylase were very similar and addition of liposome to the reaction mixture showed little inhibition of the modifications. In AAPH-initiated reaction, the rate of oxidation was higher than that of S-thiolation and addition of liposome increased oxidation of the protein but had no effect on S-thiolation. In AMVN-initiated reaction, S-thiolation was higher than oxidation and addition of liposome increased S-thiolation remarkably but showed no effect on oxidation. The effect of liposome on modifications of protein in AAPH and AMVN reaction seemed to be caused by certain reactive degradation products or intermediates of liposome by free radical attack. Peroxidation of liposome was not observed in XOD-initiated reaction. Liposome was gradually peroxidized by AAPH reaction. The peroxidation was inhibited by addition of GSH and phosphorylase. Peroxidation of liposome by AMVN was extreamly fast, and was not affected by GSH and phosphorylase.

  • PDF