• Title/Summary/Keyword: Oxidized material

Search Result 240, Processing Time 0.025 seconds

Physicochemical Characteristics of Waste Catalyst and Their In-Process Products from Recycling (폐촉매 및 재활용 중간생성물의 물리화학적 특성 평가)

  • Park, Joon-Seok;Jeun, Byung-Do;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.150-158
    • /
    • 2011
  • This research was conducted to estimate the physicochemical characteristics of waste catalyst and its in-process product from recycling and to suggest fundamental data for religious systems such as quality standards. Mo and V contents were increased from the waste catalyst to calcinated material and oxidized material. In the results of a heavy metals leaching test, Pb was not detected in any catalyst, calcinated and oxidized materials. Cu was not detected in the catalyst. However, it was detected in ${\leq}$1.16 mg/l for calcinated material and in 1.34~13.73 mg/l for $MoO_3$ oxidezed material. Concentrations in recycling in-process products (calcinated and oxidized materials) were higher than those of waste catalyst. Oil content of catalyst waste ranged from 0.01-14.03 wt%. Oil contents of calcinated and oxidized materials were greatly decreased compared to the catalyst waste. Carbon and sulfur contents as chemical poisoning material of catalyst waste ranged from 0.33-76.08 wt% and 5.00-22.00 wt%, respectively. The carbon contents of calcinated and oxidized materials showed below 20 wt%. The sulfur content showed below 8wt% for calcinated material and below 0.22 wt% for oxidized material.

Study on UV degradation in Polymeric Insulating Materials for Use in Outdoor Insulators by Corona-Charging (코로나 대전을 통한 옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Youn, Bok-Hee;An, Jong-Sik;Lee, Sang-Yong;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.106-109
    • /
    • 2001
  • In this paper, we have investigated the degradation of shed materials of outdoor insulators by UV-radiation by using corona-charging and XPS analysis. The accumulated charges on polymeric surface having intrinsic hydrophobic property have a negative impact on retaining its hydrophobicity. Therefore, shorter decay times of surface charges are preferred. The surface voltage decay on UV-treated silicone rubber and EPDM show a different decay trend with UV treated time. From the XPS analysis, the oxidized groups of silica-like structure in silicone rubber increase with UV treatment time. For EPDM, the oxidized carbon groups of C=O, O=C-O increase as elapse of UV radiation time. These oxidized surface for each material have different electrostatic characteristics, so deposited charges may be expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results is discussed.

  • PDF

Electrical properties of Metal-Oxide-Semiconductor (MOS) capacitor formed by oxidized-SiN (Oxidized-SiN으로 형성된 4H-SiC MOS capacitor.의 전기적 특성)

  • Moon, Jeong-Hyun;Kim, Chang-Hyun;Lee, Do-Hyun;Bahng, Wook;Kim, Nam-Kyun;Kim, Hyeong-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.45-46
    • /
    • 2009
  • We have fabricated advanced metal-oxide-semiconductor (MOS) capacitors with thin (${\approx}10\;nm$) Inductive-Coupled Plasma (ICP) CVD $Si_xN_y$ dielectric layers and investigated electrical properties of nitrided $SiO_2$/4H-SiC interface after oxidizing the $Si_xN_y$ in dry oxidation and/or $N_2$ annealing. An improvement of electrical properties have been revealed in capacitance-voltage (C-V) and current density-electrical field (J-E) measurements if compared with non-annealed oxidized-SiN. The improvements of SiC MOS capacitors formed by oxidized-SiN have been explained in this paper.

  • PDF

Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. I. Applied Voltage and Time (PEO 처리조건에 따른 마그네슘 합금 AZ31과 AZ91의 산화표면피막특성에 대한 연구. I. 전압과 시간의 영향)

  • Ham, Jae-Ho;Jeon, Min-Seok;Kim, Yong-Nam;Shin, Min Chul;Kim, Kwang Youp;Kim, Bae-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.218-224
    • /
    • 2016
  • The surface of Mg alloy, AZ31 and AZ91, were treated by PEO (plasma electrolytic oxidation) in Na-P system electrolyte, with different applied voltage and time. Thickness, roughness and X-ray crystallographic analysis revealed several results. The more applied time and voltage of PEO treated, the thicker oxidized surface coating layer were covered. And surface roughness increased with the thickness of oxidized layer. It was thought that when oxide layer grew, resistivity and breakdown voltage increased with the thickness of layer, and then, the energy of micro plasma need to be higher then before. So, it made craters and pores of surface become greater, which were responsible for the coarse surface.

Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. II. Electrolyte (PEO 처리조건에 따른 마그네슘 합금 AZ31과 AZ91의 산화표면피막특성에 대한 연구. II. 전해질의 영향)

  • Ham, Jae-Ho;Jeon, Min-Seok;Kim, Yong-Nam;Shin, Hyun-Gyoo;Kim, Sung Youp;Kim, Bae-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.225-230
    • /
    • 2016
  • Effect of electrolyte composition and concentration on PEO coating layer were investigated. Mg alloy, Surface of AZ31 and AZ91 were oxidized using PEO with different electrolyte system, Na-P and Na-Si. and applied voltage and concentration. We measured thickness, roughness, X-ray crystallographic analysis and breakdown voltage of the oxidized layer. When increasing concentration of electrolyte, the thickness of oxide layer also increased too. And roughness also increased as concentration of electrolyte increasing. Breakdown voltage of coated layer showed same behavior, the voltage goes high as increasing thickness of coating layer, as increasing concentration of electrolyte, and increasing applied voltage of PEO. $Mg_2SiO_4$ phase were observed as well as MgO.

Facile Synthesis of Co3O4/Mildly Oxidized Multiwalled Carbon Nanotubes/Reduced Mildly Oxidized Graphene Oxide Ternary Composite as the Material for Supercapacitors

  • Lv, Mei-Yu;Liu, Kai-Yu;Li, Yan;Wei, Lai;Zhong, Jian-Jian;Su, Geng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1349-1355
    • /
    • 2014
  • A three-dimensional (3D) $Co_3O_4$/mildly oxidized multiwalled carbon nanotubes (moCNTs)/reduced mildly oxidized graphene oxide (rmGO) ternary composite was prepared via a simple and green hydrolysishydrothermal approach by mixing $Co(Ac)_2{\cdot}4H_2O$ with moCNTs and mGO suspension in mixed ethanol/$H_2O$. As characterized by scanning electron microscopy and transmission electron microscopy, $Co_3O_4$ nanoparticles with size of 20-100 nm and moCNTs are effectively anchored in mGO. Cyclic voltammetry and galvanostatic charge-discharge measurements were adopted to investigate the electrochemical properties of $Co_3O_4$/moCNTs/rmGO ternary composite in 6 M KOH solution. In a potential window of 0-0.6 V vs. Hg/HgO, the composite delivers an initial specific capacitance of 492 $Fg^{-1}$ at 0.5 $Ag^{-1}$ and the capacitance remains 592 $Fg^{-1}$ after 2000 cycles, while the pure $Co_3O_4$ shows obviously capacitance fading, indicating that rmGO and moCNTs greatly enhance the electrochemical performance of $Co_3O_4$.

Effect of Al Alloy Composition on Physical and Crystallographical Properties of Plasma Electrolytic Oxidized Coatings I. Physical Properties of PEO Layer (플라즈마 전해 산화 코팅에 있어서 알루미늄 합금 모재 성분의 물리적, 결정학적 영향 I. PEO 층의 물성)

  • Kim, Bae-Yeon;Lee, Deuk-Yong;Kim, Yong-Nam;Jeon, Min-Seok;Song, Jun-Kwang;Kim, Sung-Youp;Kim, Kwang-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.256-261
    • /
    • 2010
  • Physical properties of Plasma electrolytic oxidized 8 different types of Al alloys, A-1100, A-2024, A-5052, A-6061, A-6063, A-7075, ACD-7B and ACD-12 were investigated. The electrolyte for PEO was $Na_2SiO_3$ solutions with NaOH and some alkali earthen metal salts. Porous layer near the surface of PEO coating was not found, and surface roughness Ra50 was below 2.5 ${\mu}m$. Surface roughness was affected by growth rate of plasma electrolytic oxidized layer, not by Si content in Al alloy.

COMPARISON BETWEEN $TIUNITE^{TM}$ AND ANOTHER OXIDIZED IMPLANT USING THE RABBIT TIBIA MODEL

  • Yeo, In-Sung;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.339-344
    • /
    • 2007
  • Statement of problem. Various anodic oxidation techniques can be applied to dental implant surfaces. But the condition for optimal anodized surfaces has not been described yet. Purpose. The purpose of this investigation was to compare an implant that was oxidized by another method with $TiUnite^{TM}$ through resonance frequency analysis and histomorphometry. Material and methods. Turned (control), $TiUnite^{TM}$ and another oxidized fixtures, which used $Ca^{2+}$ solution for anodic oxidation, were placed in the tibiae of 5 New Zealand White rabbits. The bone responses were evaluated and compared by consecutive resonance frequency analysis once a week for 6 weeks and histomorphometry after a healing period of 6 weeks. Results. At the first week, both oxidized implants showed significantly higher implant stability quotient (ISQ) values than the control. No significant differences in resonance frequency analysis were found between the two oxidized groups for 6 weeks. The means and standard deviations of bone-to-implant contact (BIC) ratios were $71.0{\pm}4.2$ for $TiUnite^{TM}$, $67.5{\pm}10.3$ for the $Ca^{2+}$-based oxidation fixture, $22.8{\pm}6.5$ for the control. Both oxidized implants were significantly superior in osseointegration to the turned one. There was, however, no statistically significant difference between the two oxidized implants. Conclusion. $TiUnite^{TM}$ and the $Ca^{2+}$-based oxidation fixture showed superior early bone response than the control with respect to resonance frequency analysis and histomorphometry. No significant differences between the oxidized groups, however, were found in this investigation using the rabbit tibia model.

Surface Properties and Adhesion of Semiconducting and Insulating Silicone Rubber by Corona Discharge Treatment (코로나 방전처리에 의한 반도전-절연 실리콘 고무의 표면특성 및 접착특성)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.868-872
    • /
    • 2006
  • In this work, the effects of the corona treatment on surface properties of semiconducting silicone rubber were investigated in terms of contact angles, ATR-FTIR(Attenuated total reflection fourier transform infrared spectroscopy) and XPS(X-ray photoelectron spectroscopy). And the adhesive characteristics were studied by measuring the T-peel strengths. Based on chemical analysis, the surface modification can be mainly ascribed to the creation of chemically active functional groups such as C-O, C=O and C-OH on semiconducting silicone surface. This oxidized rubber layer is inorganic silica-like structure of Si bound with three to four oxygen atoms ($SiOx,\;x=3{\sim}4$. The Corona treatment produces an increase in joint strength that is maximum for 10 min treatment. However, due to brittle property of this oxidized layer, the highly oxidized layer from too much extended treatment could be act as a weak point, decreasing the adhesion strength.

Process of explosive compaction of internally oxidized powders; Cu-0.15%BeO

  • Moon, J.G.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.447-451
    • /
    • 2002
  • The explosive compaction for processing of electrode material was realized based on axisymmetric loading scheme. The compression of internally oxidized fraction of the alloy Cu-0.15%BeO alloy did not provide a considerable strengthening effect; average microhardness varied from 130 to l50Mpa. The tensile strength comes to 30Mpa. However this method can be applicable to obtain a dense briquette for further extrusion of electrode.

  • PDF