Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.4.225

Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. II. Electrolyte  

Ham, Jae-Ho (Department of Materials Sci. and Eng., Incheon Natational University)
Jeon, Min-Seok (Material & Components Technology Center, Korea Testing Laboratory)
Kim, Yong-Nam (Material & Components Technology Center, Korea Testing Laboratory)
Shin, Hyun-Gyoo (Material & Components Technology Center, Korea Testing Laboratory)
Kim, Sung Youp (MST Technology)
Kim, Bae-Yeon (Department of Materials Sci. and Eng., Incheon Natational University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.4, 2016 , pp. 225-230 More about this Journal
Abstract
Effect of electrolyte composition and concentration on PEO coating layer were investigated. Mg alloy, Surface of AZ31 and AZ91 were oxidized using PEO with different electrolyte system, Na-P and Na-Si. and applied voltage and concentration. We measured thickness, roughness, X-ray crystallographic analysis and breakdown voltage of the oxidized layer. When increasing concentration of electrolyte, the thickness of oxide layer also increased too. And roughness also increased as concentration of electrolyte increasing. Breakdown voltage of coated layer showed same behavior, the voltage goes high as increasing thickness of coating layer, as increasing concentration of electrolyte, and increasing applied voltage of PEO. $Mg_2SiO_4$ phase were observed as well as MgO.
Keywords
PEO; crystal structure; electrolyte; breakdown voltage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Verdier, M. Boinet, S. Maximovitch, and F. Dalard, Corrosion. Science., 47, 1427 (2005). [DOI: http://dx.doi.org/10.1016/j.corsci.2004.07.038]   DOI
2 Y. G. Ko, E. S. Lee, and D. H. Shin, Journal of Alloys and Compounds, 586, S357 (2014). [DOI: http://dx.doi.org/10.1016/j.jallcom.2013.03.015]   DOI
3 Y. Ma, H. Hu, D. Northwood, and X. Nie, Journal of Materials Processing Technology, 182, 58 (2007). [DOI: http://dx.doi.org/10.1016/j.jmatprotec.2006.07.007]   DOI
4 H. F. Guo, M. Z. An, H. B. Huo, S. Xu, and L. J. Wu, Applied Surface Science, 252, 7911 (2006). [DOI: http://dx.doi.org/10.1016/j.apsusc.2005.09.067]   DOI
5 D. K. Lee, Y. H. Kim, H. Park, U. C. Jung, and W. S Chung, Journal of Korea Institute Surface Engineering, 42, 3 (2009).
6 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surface and Coatings Technology, 122, 73 (1999). [DOI: http://dx.doi.org/10.1016/S0257-8972(99)00441-7]   DOI
7 B. L. Mordike, and T. Ebert, Materials Science and Engineering, A302, 37 (2001). [DOI: http://dx.doi.org/10.1016/S0921-5093(00)01351-4]   DOI
8 H. F. Guo, M. Z. An, S. Xu, and H. Huo, Thin Solid Films, 485, 53 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.03.050]   DOI
9 H. F. Guo, and M. Z. An, Applied Surface Science, 246, 229 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.11.031]   DOI
10 R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G. E Thompson, Corrosion Science, 50, 1744 (2008). [DOI: http://dx.doi.org/10.1016/j.corsci.2008.03.002]   DOI
11 A. V. Timoshenko, and Y. V. Magurova, Surface and Coatings Technology, 199, 135 (2005). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2004.09.036]   DOI
12 J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, and T. Xu, Applied Surface Science, 252, 345 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2005.01.007]   DOI
13 Q. Cai, L. Wang, B. Wei, and Q. Liu, Surface and Coatings Technology, 200, 3727 (2006). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2005.05.039]   DOI
14 H. Y. Hsiao, H. C. Tsung, and W. T. Tsai, Surface and Coatings Technology, 199, 127 (2005). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2004.12.010]   DOI