• Title/Summary/Keyword: Oxidized environment

Search Result 174, Processing Time 0.031 seconds

Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment (팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여)

  • Lee, Yeonjung;Ha, Sun-Yong;Hur, Jin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.192-201
    • /
    • 2019
  • While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory pool, biodegradation experiment and $KMnO_4$ oxidation experiment were conducted for 60 days using $^{13}C$ and $^{15}N$ labeled natural phytoplankton assemblage. The assemblage was collected from Lake Paldang on May 20, 2010. The photosynthetically produced total organic carbon ($TO^{13}C$), particulate organic carbon ($PO^{13}C$), and particulate nitrogen ($P^{15}N$) remained at 26%, 20%, and 17% of the initial concentrations, respectively, in the form of non-biodegradable organic matter. In addition, 12% and 38% of $PO^{13}C$ remained after $KMnO_4$ treatment on Day 0 and 60, respectively. These results indicate that photosynthetic products could be an important source of refractory organic matter after microbial degradation. Moreover, the microbially transformed algal-derived OM could contribute to the oxidation rate of the chemical oxygen demand.

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature ($NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거)

  • Byun, Young-Chul;Lee, Ki-Man;Koh, Dong-Jun;Shin, Dong-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).

Atmospheric Pressure Plasma Treatment of Aqueous Bisphenol A Solution (비스페놀 A 수용액의 대기압 플라즈마 처리)

  • Jo, Jin-Oh;Choi, Kyeong Yun;Gim, Suji;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • This work investigated the plasma treatment of aqueous bisphenol A (BPA) solution and mineralization pathways. For the effective contact between plasmatic gas and aqueous BPA solution, the plasma was created inside a porous ceramic tube, which was uniformly dispersed into the aqueous solution through micro-pores of the ceramic tube. Effects of the gas flow rate, applied voltage and treatment time on the decomposition of BPA were examined, and analyses using ultraviolet (UV) spectroscopy, ion chromatography and gas chromatography-mass spectrometry were also performed to elucidate mineralization mechanisms. The appropriate gas flow rate was around $1.0L\;min^{-1}$; when the gas flow rate was too high or too low, the BPA decomposition performance at a given electric power decreased. The increase in the voltage improves the BPA decomposition due to the increased electric power, but the energy required to remove BPA was similar, regardless of the voltage. Under the condition of $1.0L\;min^{-1}$ and 20.8 kV, BPA at an initial concentration of $10L\;min^{-1}$ (volume : 1 L) was successfully treated within 30 min. The intermediates produced by the attack of ozone and hydroxyl radicals on BPA were further oxidized to stable compounds such as acetate, formate and oxalate.

Change of Oxidation/Reduction Potential of Solution by Metal-Reducing Bacteria and Roles of Biosynthesized Mackinawite (금속환원미생물에 의한 수용액의 산화/환원전위 변화 및 생합성 맥키나와이트의 역할)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon;Lee, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.279-287
    • /
    • 2011
  • In order to identify if bacteria surviving in soils and groundwater can change the oxidation/reduction potential of groundwater, Eh values of solution that contained bacteria were measured for 2 weeks. The Eh values of the solution reacted with sulfate-reducing bacteria decreased from -120 mV to -500 mV in 5 days, and $Desulfuricans$ was superior to $Vulgaris$ in reducing the solution. The Eh value was relatively higher for the solution containing $Shewanella$, iron-reducing bacteria, showing -400 mV. During the Eh decrease by the metal-reducing bacteria, a sulfide mineral such as mackinawite (FeS) started precipitating through the microbial reducing process for sulfate and ferric iron. These results show that the ORP of natrual groundwater may be sensitive to the geomicrobial respiration. In addition, a subsurface environment where groundwater is highly reduced and sulfide minerals are largely biogenerated may be a good place to retard the migration of oxidized radionu-clides by making them precipitated as reduced forms.

Synthesis and Characterization of the Co-electrolessly Deposited Metallic Interconnect for Solid Oxide Fuel Cell (무전해 코발트 코팅된 금속계 SOFC분리판의 제조 및 특성 평가)

  • Han, Won-Kyu;Ju, Jeong-Woon;Hwang, Gil-Ho;Seo, Hyun-Seok;Shin, Jung-Chul;Jun, Jae-Ho;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.356-363
    • /
    • 2010
  • For this paper, we investigated the area specific resistance (ASR) of commercially available ferritic stainless steels with different chemical compositions for use as solid oxide fuel cells (SOFC) interconnect. After 430h of oxidation, the STS446M alloy demonstrated excellent oxidation resistance and low ASR, of approximately 40 $m{\Omega}cm^2$, of the thermally grown oxide scale, compared to those of other stainless steels. The reason for the low ASR is that the contact resistance between the Pt paste and the oxide scale is reduced due to the plate-like shape of the $Cr_2O_3$(s). However, the acceptable ASR level is considered to be below 100 $m{\Omega}cm^2$ after 40,000 h of use. To further improve the electrical conductivity of the thermally grown oxide on stainless steels, the Co layer was deposited on the stainless steel by means of an electroless deposition method; it was then thermally oxidized to obtain the $Co_3O_4$ layer, which is a highly conductive layer. With the increase of the Co coating thickness, the ASR value decreased. For Co deposited STS444 with 2 ${\mu}m$hickness, the measured ASR at $800^{\circ}$ after 300 h oxidation is around 10 $m{\Omega}cm^2$, which is lower than that of the STS446M, which alloy has a lower ASR value than that of the non-coated STS. The reason for this improved high temperature conductivity seems to be that the Mn is efficiently diffused into the coating layer, which diffusion formed the highly conductive (Mn,Co)$_3O_4$ spinel phases and the thickness of the $Cr_2O_3$(S), which is the rate controlling layer of the electrical conductivity in the SOFC environment and is very thin

CYTOCOMPATIBILITY OF THERMALLY OXIDIZED TI-AG ALLOYS (열산화 처리된 Ti-Ag 합금의 세포적합성)

  • Kim, Ho-Joong;Oh, Keun-Taek;Ee, Zi-Whan;Kim, Kyoung-Nam;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.333-343
    • /
    • 2004
  • Statement of problem: In its preceding work, change in surface characteristics were investigated in consideration that both microtopograpy and macroscopic configuration of implants surface are two of the most important factors, in that they can construct agreeable environment by raising surface energy, to affect osseointegration and biocompatibility explained by cell proliferation. Purpose: This study focused on examining cytocompatibility of dental implants materials Ti-Ag alloys, of which mechanical and electrochemical superiority to cp-Ti or Ti6Al4V were verified, in comparison with that of cp-Ti, and Ti6Al4V. Materials and methods: In this regard, MTT tests for L-929, the fibroblast connective tissues and cell proliferation tests for osteoprogenitor cells, MC3T3-E1 were performed on cp-Ti, Ti6Al4V, and Ti-Ag alloys following thermal oxidation according to appropriate heat treatment temperature(untreated, 400, 600, $800^{\circ}C$) and heat treatment duration(untreated, 0.5, 1, 4 hr). Results: The MTT tests on fibroblasts L-929 resulted in cell viability of over 90% in all experimental group entities, where, especially, the 100% of the viability for Ti-Ag alloys specimens accounted for the slightest adverse effect of ions release from those alloys on the cell. In MC3T3-E1 proliferation tests, the population of cells in the experimental group was roughly increased as experimentation proceeded, after two to four days. Proliferation showed highest viability for most of specimens, including Ti2.0Ag, treated at $600^{\circ}C$. Conclusion: In conclusion, it is the heat treatment temperature, not the duration that has considerable effects on thermal oxidation of specimens. Ti-Ag alloys treated at $600^{\circ}C$ proved to have the best surface morphology as well as cytocompatibility when compared with Ti or Ti6Al4V for short-term biocompatibility tests.

Antioxidant Activity of Green Tea Extracts toward Human Low Density Lipoprotein (사람의 Low Density Lipoprotein에 대한 녹차의 항산화 활성)

  • Park, Chun-Ok;Jin, Seung-Heun;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.850-858
    • /
    • 1996
  • Green tea leaves 12.5 g were extracted twice with 500 ml boiling water. The green tea extract (GTE) contained 4.67 mg solid. The GTE contained polyphenols sush as 54.12% (-) epicatechin gallate, 26.21% (-) epicatechin, 10.71% epicatechin gallate, 7.09% (-) epicatechin and 1.85% catechin. The GTE inhibited the copper-catalyzed oxidation of human LDL at the concentrations of 50 and $100\;{\mu}g/ml$ GTE in the presence of $5\;{\mu}M$ $CuSO_{4}$. The electrophoretic mobility of the LDL oxidized in the presence of $5\;{\mu}M\;CuSO_{4}$ was higher than that of the native LDL. The GTE also inhibited LDL oxidation induced by J774, human monocyte-derived macrophages and vascular endotherial cells. The LDL modified by copper or cells was inhibited by human macrophages at a much greater rate than native LDL in the presence of GTE. The GTE was found to be a potent inhibitor of modification of LDL. GTE inhibited the uptake of cell-modified $^(125)I-labelled$ LDL by macrophages. The formation of conjugated dienes was strongly inhibited in the presence of 50 or $100\;{\mu}g/ml$ GTE.

  • PDF

In Vitro Toxicity of Bovine Oviductal Fluid to the Mouse Embryos (생쥐 배아에 미치는 소 수란관 내액의 체외독성)

  • 이영희
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 1998
  • To investigate the role of oviductal environment in early mammalian development, we examined the effects of bovine oviductal fluid (bOF) on the development of mouse 2-cell embryos in vitro. All of the embryos cultured in medium containing 5% or more of bOF underwent degeneration after 48 hr, whereas only 5% of embryos cultured in the absence of bOF degenerated. When bOF was heated at 65 \circ C for 30 min and then added to the culture medium, the embryotoxic effect of bOF was not removed at all such that none of the embryos remained alive after 48 hr. However, when bOF heated at 90 \circ C for 30 min was added to the culture, nearly most (95%) of embryos was alive. Similarly, pretreatment of bOF with 0.1% chymotrypsin for 1 hr or overnight following heating at 65 \circ C resulted in the development of 95.5% of mouse 2-cell embryos to early blastula after 48 hr culture in the presence of treated bOF. Interestingly addition of an anti-oxidant removed the evbryotoxic effect of bOF so that 91.0% of 2-cell embryos developed to morulae or blastulae in the presence of both 5% bOF and 10 mM of glutathione (GSH) after 48 hr culture. Neither oxidized form of GSH (GSSG) nor other antioxidants, however, could support the embryonic development in the presence of bOF. From these results, it is suggested that bOF contains a protein-like factor(s) which becomes embryotoxic by exposing in vitro, probably via oxidation reaction.

  • PDF

The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling (공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향)

  • Park, Youn Jung;Lee, Sang Hoi;Kim, Chi Nyon;Won, Jong Uk;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF