• 제목/요약/키워드: Oxide nanotube

검색결과 157건 처리시간 0.026초

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3077-3083
    • /
    • 2010
  • The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.

알루미나 형틀을 이용한 서로 다른 직경을 갖는 모양을 가진 탄소나노튜브의 합성 (Synthesis of Stepped Carbon Nanotubes in Anodic Aluminum Oxide Templates)

  • 임완순;조유석;최규석;김도진
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.664-669
    • /
    • 2004
  • Anodic aluminum oxide (AAO) with pores of various diameter, density, and thickness values was obtained through control of the anodization parameters including voltage, temperature, pore widening time, anodization time, etc. The pore diameter was controlled by a pore widening in an etchant, and alumina templates having stepped nano-channels were fabricated by repetition of anodization and pore widening processes. Stepped carbon nanotubes (CNTs) were then grown on the stepped AAO templates by pyrolysis of acetylene without using the catalyst. High-resolution transmission electron microscopy images revealed that CNTs have a multi-wall structure made of graphite flakes of several nm sizes. The current-voltage characteristic of the sloped and linear CNTs were also examined.

Fabrication and Ammonia Gas Sensing Properties of Chemiresistor Sensor Based on Porous Tungsten Oxide Wire-like Nanostructure

  • Vuong, Nguyen Minh;Kim, Do-Jin;Hieu, Hoang Nhat
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • The tungsten oxide wire-like nanostructure is fabricated by deposition and thermal oxidation of tungsten metal on porous single wall carbon nanotubes (SWNTs). The morphology and crystalline quality of materials are investigated by SEM, TEM, XRD and Raman analysis. The results prove that $WO_3$ wire-like nanostructure fabricated on SWNTs show highly porous structures. Exposure of the sensors to NH3 gas in the temperature range of 150~300$^{\circ}C$ resulted in the highest sensitivity at $250^{\circ}C$ with quite rapid response and recovery time. Response time as a function of test concentrations and NH3 gas sensing mechanism is reported and discussed.

  • PDF

Spray-coated Carbon Nanotube Counter Electrodes for Dye-sensitized Solar Cells

  • Lee, Won-Jae;Lee, Dong-Yun;Kim, In-Sung;Jeong, Soon-Jong;Song, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.140-143
    • /
    • 2005
  • Carbon Nanotube(CNTs) counter electrode is a promising alternative to Platinum counter electrode for dye sensitized solar cells (DSSCs). In this study, CNT counter electrodes having different visible light transmittance were prepared on fluorine-doped tin oxide (FTO) glass surface by spray coating method. Microstructural images show that there are CNT-tangled region coated on FTO glass counter electrodes. Using such CNT counter electrodes and screen printed $TiO_2$ electrodes, DSSCs were assembled and its I-V characteristics have been studied and compared. Light energy conversion efficiency of DSSCs increased with decreasing in light transmittance of CNT counter electrode. Efficiency of DSSCs having CNT counter electrode is compatible to that of Pt counter electrode.

Laser Direct Patterning of Carbon Nanotube Film

  • 윤지욱;조성학;장원석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

Nanotube Morphology Change of Ti-6Al-4V Alloys by Heat Treatment

  • Kim, Sung-Hwan;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.194-194
    • /
    • 2013
  • In order to investigate nanotube morphology change of Ti-6Al-4V alloys by heat treatments, the Ti-6Al-4V alloys were used in this study. In non-treated Ti-6Al-4V alloy case, nanotubes only exhibited at ${\alpha}$ phase region with dissolved V-oxide area of ${\beta}$ phase. However, in Ti-6Al-4V alloy at $800^{\circ}C$ WQ case, nanotubes exhibited at both ${\alpha}$ and ${\beta}$ phase region. Electrochemical corrosion studies showed that the nanotubular alloy at $800^{\circ}C$WQ possesses slightly higher corrosion resistance than non-treated nanotubular alloy.

  • PDF

Nanotube Morphology Change of Ti-Ta-Zr Alloy as Zr Content

  • Kim, Won-Gi;Choe, Han-Cheol;Ko, Yeong-Mu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.105-106
    • /
    • 2008
  • Nanotube morphology change of Ti-Ta-Zr alloy as Zr content increase has been researched using various experimental methods. Ti-Ta-Zr(3, 7 and 15 wt%) alloys were prepared by arc melting and nano-structure controlled for 24 hr at $1000^{\circ}C$ in argon atmosphere. Formation of oxide nanotubes are conducted by anodizing a Ti-Ta-Zr alloy in $H_3PO_4$ electrolytes with small amounts of fluoride ions at room temperature. Electrochemical experiments were carried out with conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. The samples were embedded with epoxy resin, leaving a square surface area of $10mm^2$ exposed to the anodizing electrolyte, 1.0M $H_3PO_4$ containing 0.8wt% NaF.

  • PDF

산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성 (NO Gas Sensing Properties of ZnO-SWCNT Composites)

  • 장동미;안세용;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.

양극산화를 이용한 산화 타이타늄 나노 튜브 구조 형성 원리 (Principle of Anodic TiO2 Nanotube Formations)

  • 이기영
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.601-606
    • /
    • 2017
  • 금속 표면처리의 대표적인 기술인 양극산화를 통하여 일차원 나노구조 금속 산화물을 형성할 수 있다. 여러 가지 금속 산화물 중에 기능성이 뛰어난 $TiO_2$에 대한 관심의 증대로 $TiO_2$ 나노 튜브를 이용한 연구가 많이 이루어지고 있다. 본 총설논문에서는 지금까지 연구되어 밝혀진 $TiO_2$ 나노 튜브가 형성원리에 대한 해설논문으로 전기화학적 측면에서의 양극 산화 공정에 대한 이해를 통하여 나노 튜브 형성을 위한 전기적 조건, 화학적 조건, 물리적 조건에 대하여 다루었다. 특히 $TiO_2$ 나노 튜브 성장의 핵심 요소인 산화물의 형성과 에칭의 평형관계, 다공성 구조의 형성 원인을 다루었다. 나아가 전해질 조건에 따른 $TiO_2$ 나노 튜브의 형태학적 고찰을 함으로써 향후 양극 산화를 통한 $TiO_2$ 나노 튜브 응용에 관한 연구를 하는 연구자에게 이해하기 쉽게 설명하고자 하였다.

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.