• Title/Summary/Keyword: Oxide nano powder

Search Result 177, Processing Time 0.026 seconds

The Effect of Oxide Compound on Electrical Resistivity and Oxidation Stability in High-temperature for Ferritic P/M Stainless Steel (산화물 혼합상이 페라이트계 P/M스테인리스강의 고온산화 및 전기저항 안정성에 미치는 영향)

  • Park, Jin-Woo;Ko, Byung-Hyun;Jung, Woo-young;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.240-246
    • /
    • 2016
  • In order to improve the high-temperature oxidation stability, sintered 434L stainless steel is studied, focusing on the effect of the addition of metallic oxides to form stable oxide films on the inner particle surface. The green compacts of Fecralloy powder or amorphous silica are added on STS434L and oxidized at $950^{\circ}C$ up to 210 h. The weight change ratio of 434L with amorphous silica is higher than that of 434L mixed with Fecralloy, and the weight increase follows a parabolic law, which implies that the oxide film grows according to oxide diffusion through the densely formed oxide film. In the case of 434L mixed with Fecralloy, the elements in the matrix diffuse through the grain boundaries and form $Al_2O_3$ and Fe-Cr oxides. Stable high temperature corrosion resistance and electrical resistivity are obtained for STS434L mixed with Fecralloy.

The Effect of SiO2 addition on Oxidation and Electrical Resistance Stability at High-temperature of P/M Fecralloy Compact (P/M Fecralloy 성형체의 고온산화 및 전기저항 안정성에 미치는 SiO2 첨가 효과)

  • Park, Jin-Woo;Ok, Jin-Uk;Jung, Woo-young;Park, Dong-kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • A metallic oxide layer of a heat-resistant element contributes to the high-temperature oxidation resistance by delaying the oxidation and has a positive effect on the increase in electrical resistivity. In this study, green compacts of Fecralloy powder mixed with amorphous and crystalline silica are oxidized at $950^{\circ}C$ for up to 210 h in order to evaluate the effect of metal oxide on the oxidation and electrical resistivity. The weight change ratio increases as per a parabolic law, and the increase is larger than that observed for Fecralloy owing to the formation of Fe-Si, Fe-Cr composite oxide, and $Al_2O_3$ upon the addition of Si oxide. Si oxides promote the formation of $Al_2O_3$ and Cr oxide at the grain boundary, and obstruct neck formation and the growth of Fecralloy particles to ensure stable electrical resistivity.

Sintering Behavior of Nano-sized Gd2O3-doped CeO2 Powder Prepared by A High Energy Ball Milling (고에너지 볼밀링에 의해 제조된 Gd2O3-doped CeO2 나노분말의 소결 거동에 관한 연구)

  • Ryu, Sung-Soo;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.302-307
    • /
    • 2008
  • $Gd_2O_3$-doped $CeO_2$(GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at $1200^{\circ}C$ of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at $1300^{\circ}C$ for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process.

Fabrication of the Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae-Keun;NamGoong, Hyun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.426-432
    • /
    • 2012
  • This study involves using nickel chloride solution as a raw material to produce nano-sized nickel oxide powder with average particle size below 50 nm by the spray pyrolysis reaction. The influence of the inflow speed of raw material solution on the properties of the produced powder is examined. When the inflow speed of the raw material solution is at 2 ml/min., the average particle size of the powder is 15~25 nm and the particle size distribution is relatively uniform. When the inflow speed of the solution increases to 10 ml/min., the average particle size of the powder increases to about 25 nm and the particle size distribution becomes much more uneven. When the inflow speed of the solution increases to 20 ml/min., the average particle size of the powder increases in comparison to the case in which the inflow speed of the solution was 10 ml/min. However, the particle size distribution is very uneven, showing various particle size distributions ranging from 10 nm to 70 nm. When the inflow speed of solution increases to 50 ml/min., the average particle size of the powder decreases in comparison to the case in which the inflow speed was 20 ml/min., and the particle size distribution shows more evenness. As the inflow speed of the solution increases from 2 ml/min. to 20 ml/min., the XRD peak intensities gradually increase, while the specific surface area decreases. When the inflow speed of solution increases to 50 ml/min., the XRD peak intensities rather decrease, while the specific surface area increases.

Regulation of the Dispersed Composition of Aluminum Oxide Nanopowders Produced by Electrical Explosion

  • Kwon, Young-Soon;B. Nazarenko, Olga;P. Ilyin, Alexander
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.161-163
    • /
    • 2003
  • The feasibility of obtaining highly dispersed aluminum oxide powders by the electrical explosion of aluminum conductors in an inert gas atmosphere and the subsequent oxidation of aluminum particles by water prior to their contact with air is demonstrated. For a specific surface area of the initial aluminum powder of 6.5$m^2$/g, the corresponding specific surface area of the resultant aluminum oxide nanopowder was as large as 300$m^2$/g.

Synthesis and Properties of ITO Nano Powders by Spray Drying Process (분무건조법에 의한 ITO 나노분말의 합성과 특성)

  • 허민선;최철진;권대환
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • The Indium Tin Oxide(ITO) nano powders were prepared by spray drying and heat treatment process. The liquid solution dissolved Indium and Tin salts was first spray dried to prepare chemically homogeneous recursor powders at the optimum spray drying conditions. Subsequently, the precursor powders were subjected to eat treatment process. The nano size ITO powders was synthesized from the previous precursor powders and the npuities also were decreased with increasing heat treatment temperature. Furthermore, the lattice parameter of TO nano powders was increased by doping Tin into Indium with increasing heat treatment temperature. The par icle size of the resultant ITO powders was about 20∼50nm and chemical composition was composed of In:Sn =86:10 wt.% at 80$0^{\circ}C$.

Fabrication of Nano-sized WC/Co Composite Powder by Direct Reduction and Carburization with Carbon

  • Lee, Dong-Ryoul;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.642-643
    • /
    • 2006
  • Direct reduction and carburization process was thought one of the best methods to make nano-sized WC powder. The oxide powders were mixed with graphite powder by ball milling in the compositions of WC-5,-10wt%Co. The mixture was heated at the temperatures of $600{\sim}800^{\circ}C$ for 5 hours in Ar. The reaction time of the reduction and carburization was decreased as heating temperatures and cobalt content increased. The mean size of WC/Co composite powders was about 260 nm after the reactions. And the mean size of WC grains in WC/Co composite powders was about 38 nm after the reaction at $800^{\circ}C$ for 5 hours.

  • PDF

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method (부양가스증발응축법에 의해 제조된 구리산화물 나노분말의 촉매 특성 연구)

  • Uhm, Y.-R.;Kim, W.-W.;Oh, J.-S.;Rhee, C.-K.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.64-69
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly $Cu_2O$, but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.