• Title/Summary/Keyword: Oxide films

Search Result 2,383, Processing Time 0.024 seconds

Dielectric properties of ${Ta_2}{O_5}$ thin film capacitor with $SnO_2$ thin film underlayer ($SnO_2$ 박막을 이용한 ${Ta_2}{O_5}$박막 커패시터의유전특성)

  • Kim, Jin-Seok;Jeong, Gang-Min;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.759-766
    • /
    • 1994
  • Our investigation aimed to reduce the leakage current of $Ta_2O_5$ thin film capacitor by layering SnOz thin film layer under Ta thin film, thereby supplying extra oxygen ions from the $SnO_{2}$ underlayer to enhance the stoichiometry of $Ta_2O_5$ during the oxidation of Ta thin film. Tantalum was evaporated by e-beam or sputtered on p-Si wafers with various deposition temperatures and was oxidized by dry--oxygen at the temperatures between $500^{\circ}C$ and $900^{\circ}C$. Aluminum top and bottom electrodes were formed to make Al/$Ta_2O_5$/p-Si/Al or $Al/Ta_2O_5/SnO_2$p-Si/AI MIS type capacitors. LCR meter and pico-ammeter were used to measure the dielectric constants and leakage currents of the prepared thm film capacitors. XRD, AES and ESCA were employed to confirm the crystallization of the thin f~lm and the compositions of the films. Dielectric constant of $Ta_2O_5$ thin film capacitor with $SnO_{2}$ underlayer was found to be about 200, which is about 10 times higher than that of $Ta_2O_5$ thin film capacitor without $SnO_{2}$ underlayer. In addition, higher oxidation temperatures increased the dielectric constants and reduced the leakage current. Higher deposition temperature generally gave lower leakage current. $Ta_2O_5/SnO_2$ capacitor deposited at $200^{\circ}C$ and oxidized at $800^{\circ}C$ showed significantly lower leakage current, $10^{-7}A/\textrm{cm}^2$ at $4 \times 10^{5}$V/cm, compared to the one without $SnO_{2}$ underlayer. XRD showed that $Ta_2O_5$ thin film was crystallized above $700^{\circ}C$. AES and ESCA showed that initially the $SnO_{2}$, underlayer supplied oxygen ions to oxidize the Ta layer, however, Sn also diffused into the Ta thin film layer to form a new $Ta_xSn_YO_Z$ , ternary oxide layer after all.

  • PDF

Crytallization Behavior of Amorphous ${Si_{1-x}}{Ge_x)$ Films Deposited on $SiO_2$ by Molecular Beam Epitaxy(MBE) ($SiO_2$위에 MBE(Moleculat Beam Epitaxy)로 증착한 비정질 ${Si_{1-x}}{Ge_x)$박막의 결정화거동)

  • Hwang, Jang-Won;Hwang, Jang-Won;Kim, Jin-Won;Kim, Gi-Beom;Lee, Seung-Chang;Kim, Chang-Su
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.895-905
    • /
    • 1994
  • The solid phase crystallization behavior of undoped amorphous $Si_{1-x}Ge_{x}$ (X=O to 0.53) alloyfilms was studied by X-ray diffractometry(XRD) and transmission electron microscopy(TEM). Thefilms were deposited on thermally oxidized 5" (100) Si wafer by MBE(Mo1ecular Beam Epitaxy) at 300'C and annealed in the temperature range of $500^{\circ}C$ ~ $625^{\circ}C$. From XRD results, it was found that the thermal budget for full crystallization of the film is significantly reduced as the Ge concentration in thefilm is increased. In addition, the results also shows that pure amorphous Si film crystallizes with astrong (111) texture while the $Si_{1-x}Ge_{x}$ alloy film crystallzes with a (311) texture suggesting that the solidphase crystallization mechanism is changed by the incorporation of Ge. TEM analysis of the crystallized filmshow that the grain morphology of the pure Si is an elliptical and/or a dendrite shape with high density ofcrystalline defects in the grains while that of the $Si_{0.47}Ge_{0.53}$ alloy is more or less equiaxed shape with muchlower density of defects. From these results, we conclude that the crystallization mechanism changes fromtwin-assisted growth mode to random growth mode as the Ge cocentration is increased.ocentration is increased.

  • PDF

Evaluation of the radiopacity and cytotoxicity of resinous root canal sealers (레진계 근관충전실러의 방사선 불투과성 및 세포 독성에 대한 평가)

  • Kim, Chang-Kyu;Ryu, Hyun-Wook;Chang, Hoon-Sang;Lee, Byung-Do;Min, Kyung-San;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.419-425
    • /
    • 2007
  • The aim of this study was to evaluate the radiopacity and cytotoxicity of three resin-based (AH 26, EZ fill and AD Seal), a zinc oxide-eugenol-based (ZOB Seal), and a calcium hydroxide-based (Sealapex) root canal sealers. Specimens, 10 mm in diameter and 1 mm in thickness, were radiographed simultaneously with an aluminum step wedge using occlusal films, according to ISO 6876/2001 standards. Radiographs were digitized, and the radiopacity of sealers was compared to the different thicknesses of the aluminum step wedge, using the Scion image software. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of each material was determined in immortalized human periodontal ligament (IPDL) cells. The results demonstrated that EZ fill was the most radiopaque sealer, while Sealapex was the least radiopaque (p < 0.05). AH 26, AD Seal and ZOB Seal presented intermediate radiopacity values. All the materials evaluated, except for Sealapex, presented the minimum radiopacity required by ISO standards. The cell viabilities of resin-based root canal sealers were statistically higher than that of other type of root canal sealers through the all experimental time. Further, EZ fill showed statistically lower cell viability in 24 and 48 hours compared to AD Seal and in 72 hours compared to all other resin-based root canal sealers. However, there was no correlation between the radiopacity and cytotoxicity of three resin-based root canals sealers (p > 0.05). These results indicate that resin-based root canal sealer is more biocompatible and has advantage in terms of radiopacity.