• 제목/요약/키워드: Oxide electrodes and electrolyte

검색결과 90건 처리시간 0.023초

고온 수전해에 의한 수소 제조 기술 (Hydrogen Production Technology using High Temperature Electrolysis)

  • 홍현선;추수태;윤용승
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.335-347
    • /
    • 2003
  • High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.

Fetal Bovine Serum을 포함한 세포 배양액에 담근 Indium Tin Oxide 전극 계면의 전기화학적 특성 (Electrochemical Properties of Indium Tin Oxide Electrodes Immersed in a Cell Culture Medium with Fetal Bovine Serum)

  • 최원석;조성보
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권1호
    • /
    • pp.34-39
    • /
    • 2013
  • For the biocompatibility test of implantable devices or for the sensitivity evaluation of biomedical sensors, it is required to understand the mechanism of the protein adsorption and the interaction between the adsorbed proteins and cells. In this study, the adsorption of proteins in a cell culture medium with fetal bovine serum onto an indium tin-oxide electrode was characterized by using linear sweep voltammetry and impedance spectroscopy. We immersed the fabricated ITO electrodes in the culture medium for 30, 60, or 90 min, and then measured the electrochemical properties of electrodes with 10 mM $Fe(CN){_6}^{3-/4-}$ and 0.1 M KCl electrolyte. With an increase of contacting time, the anodic peak current was decreased and the charge transfer resistance was increased. However, both parameters were recovered to the values before contact with the medium after the treatment of Trypsin/Ethylenediaminetetraacetic acid hydrolyzing proteins.

Highly Efficient Dye-Sensitized Solar Cells with Nonplatinized Graphene Oxide/Metal

  • 전용석;이동욱;김정우;임정민;서승혁;한민수;한치환;신현석;전용석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • A key technological issue related to the implementation of dye-sensitized solar cells (DSSCs) is the replacement of Pt at the counter electrodes with an inexpensive and electro-chemically stable alternative. Carbon based nanomaterials could be promising candidates, but in practice they exhibit inadequate device performance. Here, we report very thin graphene oxide (GO)/metal hybrid films as transparent counter electrodes for high-efficiency DSSCs. Transparent GO/Pt and GO/Au hybrid films showed cell efficiencies of 9.2 and 9.0%, respectively (improvements of 9.5 and 7.1% over conventional Pt counter electrodes). More interestingly, highly stable DSSCs with GO hybrid films from relatively inexpensive metals such as Cu and Ni have been demonstrated with efficiency values comparable to Pt counter electrodes. The results reported in this study should enable low-cost fabrication of DSSCs because it allows the use of relatively inexpensive metals such as Au, Cu, Ni, and Ag that could not be previously employed in DSSCs with iodide/tri-iodide electrolyte due to corrosion.

  • PDF

Copper oxide/n-Si 전극의 광전기화학 변환 특성과 안정성에 미치는 Pt 층의 영향 (Effect of Pt Layers on the Photoelectrochemical Properties and Stability of a Copper Oxide/n-Si Electrode)

  • 윤기현;홍석건;강동헌
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.263-270
    • /
    • 2000
  • The Pt/copper oxide/n-Si electrodes were fabricated by depositing copper oxide thin film of 500${\AA}$ and very thin Pt layer on the n-type (100) Si substrate. hotoelectrochemical properties and stability profiles of the electrodes were investigated as a function of deposition time of Pt layer. As the deposition time of Pt layer increased up to 10 seconds, the photocurrent and quantum efficiency were increased and then decreased with further depositing time. The better cell stability was observed for the electrode with longer deposition time. The improvements in above photoelectrochemical properties indicate that Pt layer acts as a catalyst layer at electrode/electrolyte interface as well as a protective layer. The decreasing tendency of the photocurrent and efficiency for the electrode with Pt layer deposited above 20 seconds was explained as an increases in probbility of electron-hole pair recombination and also the absorbing photon loss at electrode surface due to the excessive thickness of Pt layer. The results were confirmed by impedance spectroscopy, mutiple cycle voltammograms and microstructural analyses.

  • PDF

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.

Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells

  • Kim, Ki-Yong;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.40-46
    • /
    • 2016
  • Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.

고성능 고체산화물 연료전지를 위한 이중층 전해질 전략 (A brief review of the bilayer electrolyte strategy to achieve high performance solid oxide fuel cells)

  • 박정화;김도엽;김경준;배경택;이강택
    • 세라미스트
    • /
    • 제23권2호
    • /
    • pp.184-199
    • /
    • 2020
  • The solid oxide fuel cells (SOFCs) are the one of the most promising energy conversion devices which can directly convert chemical energy into electric power with high efficiency and low emission. The lowering operating temperature below 800 ℃ has been considered as the mostly considerable research and development for commercialization. The major issue is to maintain reasonably high performance of SOFCs at reduced temperatures due to increment of polarization resistance of electrodes and electrolyte. Thus, the alternative materials with high catalytic activities and fast oxygen ion conductivity are required. For recent advances in electrolyte materials and technology, newly designed, highly conductive electrolyte materials and structural engineering of them provide a new path for further reduction in ohmic polarization resistance from electrolytes. Here, a powerful strategy of the bilayer concept with various oxide electrolytes of SOFCs are briefly reviewed. These recent developments also highlight the need for electrolytes with greater conductivity to achieve a high performance, thus providing a useful guidance for the rational design of cell structures for SOFCs. Moreover, cell design, materials compatibility, processing methods, are discussed, along with their role in determining cell performance. Results from state-of-the-art SOFCs are presented, and future prospects are discussed.

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin;Yoon, Da-ye;Kim, Woo-byoung;Lee, Jae-won
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

양극반응으로 제조된 다공질 WO3 박막의 가스센서 특성 (The gas sensing characteristic of the porous tungsten oxide thin films based on anodic reaction)

  • 이홍진;송갑득;이덕동
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.9-14
    • /
    • 2008
  • In this paper, the gas responses of tungsten oxide films prepared by anodic reaction was discussed. Sensing electrodes and heating electrodes were patterned by photolithography method on quartz substrate. Porous tungsten oxide was fabricated in electrolyte solutions of 5 % HF (HF :$C_2H_6OH:H_2O$=3 : 2 : 20) by anodic reaction. The anodic reaction with metal (platinum wire) as a cathode and the sensing device as an anode was conducted under the various reaction times (1-10 min) at 10 mA/$cm^2$ The surface structure and morphology of the fabricated sensor have been analysed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). All the peaks of XRD results were well indexed to the pure phase pattern. The average diameter of the porous tungsten oxide surface were ranged about 100 nm. The fabricaed sensor showed good sensitivity to 200 ppm toluene at operating temperature of $250^{\circ}C$.

전극의 임피던스 감소를 위해 백금 도금한 ITO 신경신호 검출용 다중 전극 제작 (The fabrication of Pt electroplating on ITO multi-electrode array in neuronal signal detection)

  • 권광민;최준호;이경진;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.257-259
    • /
    • 2002
  • In investigating the characteristics of a neural network, the use of planar microelectrode array shows several advantages over normal intracellular recording[1]. A transparent indium tin oxide(ITO) multi-electrode array(MEA) was fabricated and its top surface was insulated with photodefinable polyimide(HD-8001) except the exposed area for interfacing between the ITO electrodes and the neuronal cells. The exposed ITO electrodes were platinized in order to reduce the impedance between the electrodes and electrolyte. The one-minute platinization with $0.99nA/{\mu}m^2$ current density reduced the average impedance of the electrodes from $2.5M\Omega\;to\;90k\Omega$ at 1kHz in normal ringer solution. Cardiac cells were cultured on this MEA as a pilot study before neuron culture. The signals detected by the platinized electrodes had larger amplitudes and improved signal to noise ratio(SNR) compared to non-platinized electrodes. It is clear that microelectrodes need to have lower impedance to make reliable extracellular recordings, and thus platinization is essential part of MEA fabrication. Burst spike of cultured olfactory bulb was also detected with the MEA having platinized electrodes.

  • PDF