• Title/Summary/Keyword: Oxide anodes

Search Result 55, Processing Time 0.026 seconds

Study on Wet chemical Etching Characterization of Zinc Oxide Film for Transparency Conductive Oxide Application (투명 전도성 산화물 전극으로의 응용을 위한 산화아연(ZnO) 코팅막의 습식 식각 특성연구)

  • Yoo, Dong-Geun;Kim, Myoung-Hwa;Jeong, Seong-Hun;Boo, Jin-Hyo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin films on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for high transmittance and low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 200 W, target to substrate distance of 30 mm and working pressure of 5 mTorr, highly conductive($7.4{\times}10^{-3}{\Omega}cm$) and transparent(over 85%) ZnO films were prepared. Highly oriented ZnO film in the [002] direction were obtained with specifically designed ZnO targets. Systematic study on dependence of deposition parameters on electrical and optical properties of the as-grown ZnO films were mainly investigated in this work. And for application tests using these films as transparent conductive oxide anodes, wet chemical etching behaviors of ZnO films were also investigated using various chemicals. Wet-chemical etching behavior of ZnO films were investigated using various acid solutions. The concentrations of these different acid solutions were controlled to study the etching shapes and etching rate. ZnO films were anisotropically etched at various concentrations and wet etching led to crater-like surface structure. Also we firstly found that the etching rate and etching shapes of ZnO films strongly depended on the etchant concentrations (i.e. pH) and the etching rate is exponentially decreased with increasing pH values regardless of the acid etchants.

The Influence of Surface-modified ITO by Ion Beam Irradation on the Organic EL Performances (이온빔으로 조사된 ITO 전극 표면이 유기 EL 소자성능에 미치는 영향)

  • Oh, Jae-young;Joo, Jin-soo;Lee, Chun-An;Park, Byung-Gook;Kim, Dong-hwan
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.191-194
    • /
    • 2003
  • The influence of on ion beam irradiation to the indium tin oxide (ITO) substrate on the performance of the organic light-emitting diodes (OLEDs) was studied. ITO films were used as the transparent anode of OLEDs with poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) as a hole-injection/transport layer. Oxygen and argon plasma treatment of ITO resulted in a change in the work function and the chemical composition. For plasma treated ITO anodes, the device efficiency clearly correlated with the value of the work function. We also discussed the implications of our experimental study in relation to the modification of the ITO surface composition, transmittance, reflectance, and water contact angle (WCA).

Influences of Coating Cycles and Composition on the Properties of Dimensionally Stable Anode for Cathodic Protection

  • Yoo, Y.R.;Chang, H.Y.;Take, S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Properties of the anode for cathodic protection need low overvoltage for oxygen evolution and high corrosion resistance. It is well known that DSA (Dimensionally Stable Anode) has been the best anode ever since. DSA is mainly composed of $RuO_2$, $IrO_2$, $ZrO_2$, $Co_2O_3$, and also $Ta_2O_5$, $TiO_2$, $MnO_2$ are added to DSA for better corrosion resistance. The lifetime of DSA for cathodic protection is also one of the very important factors. $RuO_2$, $IrO_2$, $RhO_2$, $ZrO_2$ are well used for life extension, and many researches are focused on life extension by lowering oxygen evolution potential and minimizing dissolution of oxide coatings. This work aims to evaluate the influence of constituents of MMO and coating cycles and $ZrO_2$ coating on the electrochemical properties and lifetime of DSA electrodes. From the results of lifetime assessment in the anodes coated with single component, $RuO_2$ coating was more effective and showed longer lifetime than $IrO_2$ coating. Also, an increased coating cycle and an electrochemically coated $ZrO_2$ could enhance the lifetime of a DSA.

Synthesis of SnO2 Nanotubes Via Electrospinning Process and Their Application to Lithium Ion Battery Anodes (전기방사법을 통한 주석산화물 나노튜브의 합성 및 리튬이차전지 음극으로의 응용)

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.271-277
    • /
    • 2012
  • $SnO_2$ nanotubes were successfully synthesized using an electrospinning technique followed by calcination in air. The nanotubes were the single phase nature of $SnO_2$ and consisted of approximately 14 nm nanocrystals. SEM and TEM characterizations demonstrated that uniform hollow fibers with an average outer diameter of around 124 nm and wall thickness of around 25 nm were successfully obtained. As anode materials for lithium ion batteries, the $SnO_2$ nanotubes exhibited excellent cyclability and reversible capacity of $580mAhg^{-1}$ up to 25 cycles at $100mAg^{-1}$ as compared to $SnO_2$ nanoparticles with a capacity of ${\sim}200mAhg^{-1}$. Such excellent performance of the $SnO_2$ nanotube was related to the one-dimensional hollow structure which acted as a buffer zone during the volume contraction and expansion of Sn.

Mechanical and Electrical Performance of Anode-Supported Solid Oxide Fuel Cells during Thermal Cyclic Operation (열 사이클에 따른 고체산화물 연료전지의 기계적 및 전기적 특성)

  • Yang, Su-Yong;Park, Jae-Keun;Lee, Tae-Hee;Yu, Jung-Dae;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.775-780
    • /
    • 2006
  • Mechanical and electrical performance of anode-supported SOFC single cells were analyzed after thermal cyclic operation. The experiments of thermal cyclic cell-operation were carried out four times and performance of each cell was measured at different temperatures of 650, 700, and $750^{\circ}C$, respectively. As increasing the number of thermal cycle test, single cells showed poor I-V characteristics and lower 4-point bending strength. The anode polarization was also measured by AC-impedance analysis. The observation of the microstructure of the anodes in single cells proved that the average particle size of Ni decreased and the porosity of anode increased. It is thought that the thermal cycle caused the degradation of performance of single cells by reducing the density of three-phase boundary region.

Combinatorial studies on the work function characteristics for Nb or Zn doped indium-tin oxide electrodes

  • Heo, Gi-Seok;Kim, Sung-Dae;Park, Jong-Woon;Lee, Jong-Ho;Kim, Tae-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.159-159
    • /
    • 2008
  • Indium-tin oxides (ITO) films have been widely used as transparent electrodes for optoelectronic devices such as organic light emitting diodes (OLEDs), photovoltaics, touch screen devices, and flat-paneldisplay. In particular, to improve hole injection efficiency in OLEDs, transparent electrodes should have high work-function besides their transparency and low resistivity. Nevertheless, few studies have been made on engineering the work function of ITO for use as an efficient anode. In this study, the effects of a wide range of Nb or Zn doping rate on the changes in work functions of ITO anode were investigated. The Nb or Zn doped ITO films were fabricated on glass substrates using combinatorial sputtering system which yields a linear composition spread of Nb or Zn concentration in ITO films in a controlled manner by co-sputtering two targets of ITO and Nb2O5 or ITO and ZnO. We have also examined the resistivity, transmittance, and other structural properties of the Nb or Zn-doped ITO films. Furthermore, OLEDs employing Nb or Zn-doped ITO anodes were fabricated and the device performances were investigated concerned with the work function changes.

  • PDF

Preparation of Silicon-Carbon-Graphene Composites and their Application to Lithium Ion Secondary Battery (실리콘-탄소-그래핀 복합체 제조 및 리튬이온 이차전지 응용)

  • Kim, SunKyung;Kim, ChanMi;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.127-137
    • /
    • 2019
  • Recently, high electrochemical performance anode materials for lithium ion secondary batteries are of interest. Here, we present silicon-carbon-graphene (Si-C-GR) composites for high performance anode materials of lithium ion secondary battery (LIB). Aerosol process and heat-treatment were employed to prepare the Si-C-GR composites using a colloidal mixture of silicon, glucose, and graphene oxide precursor. The effects of the size of the silicon particles in Si-C-GR composites on the material properties including the morphology and crystal structure were investigated. Silicon particles ranged from 50 nm to 1 ㎛ in average diameter were employed while concentration of silicon, graphene oxide and glucose was fixed in the aerosol precursor. Morphology of as-fabricated Si-C-GR composites was generally the shape of a crumpled paper ball and the Si particles were well wrapped in carbon and graphene. The size range of composites was about from 2.2 to 2.9 ㎛. The composites including silicon particles larger than 200 nm in size exhibited higher performance as LIB anodes such as capacity and coulombic efficiency than silicon particles less than 100 nm, which were about 1500 mAh/g at 100 cycles in capacity and 99% in coulombic efficiency, respectively.

Characteristics of Sr0.92Y0.08Ti1-xVxO3-δ (x = 0.01, 0.04, 0.07, 0.12) Anode for Using H2S Containing Fuel in Solid Oxide Fuel Cells (H2S를 포함하는 연료를 사용하기 위한 고체산화물 연료전지용 Sr0.92Y0.08Ti1-xVxO3-δ 연료극 특성)

  • Jang, Geun Young;Kim, Jun Ho;Mo, Su In;Park, Gwang Seon;Yun, Jeong Woo
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.557-564
    • /
    • 2021
  • Sr0.92Y0.08Ti1-xVxO3-δ (SYTV) with perovskite structure was investigated as an alternative anode to utilize H2S containing fuels in solid oxide fuel cells. To improve the electrochemical performance of Sr0.92Y0.08TiO3-δ (SYT), vanadium(V) was substituted to titanium(Ti) at the B-site of the SYT perovskites. The SYTV synthesized by the Pechini method was chemically compatible with the YSZ electrolyte without additional by-products formation under the cell fabricating conditions. As increasing V substitution amounts, the oxygen vacancies increased, resulting to increasing ionic conductivity of the anode. The cell performance in pure H2 at 850 ℃ is 19.30 mW/cm2 and 34.87 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively. The cell performance using H2 fuel containing 1000 ppm of H2S at 850 ℃ was 23.37 mW/cm2 and 73.11 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively.

Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries (Zn2GeO4와 Zn2SnO4 나노선의 리튬 및 소듐 이온전지 성능 비교 연구)

  • Lim, Young Rok;Lim, SooA;Park, Jeunghee;Cho, Won Il;Lim, Sang Hoo;Cha, Eun Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.161-171
    • /
    • 2015
  • High-yield zinc germanium oxide ($Zn_2GeO_4$) and zinc tin oxide ($Zn_2SnO_4$) nanowires were synthesized using a hydrothermal method. We investigated the electrochemical properties of these $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires as anode materials of lithium ion battery and sodium ion battery. The $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires showed excellent cycling performance of the lithium ion battery, with a maximum capacity of 1021 mAh/g and 692 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 98 %. For the first time, we examined the cycling performance of $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires for sodium ion batteries. The maximum capacity is 168 mAh/g and 200 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 97%. These nanowires are expected as promising electrode materials for the development of high-performance lithium ion batteries as well as sodium ion batteries.

Brush-painted Ti-doped In2O3 Transparent Conducting Electrodes Using Nano-particle Solution for Printable Organic Solar Cells

  • Jeong, Jin-A;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.458.2-458.2
    • /
    • 2014
  • We have demonstrated that simple brush-painted Ti-doped $In_2O_3$(TIO) films can be used as a cost effective transparent anodes for organic solar cells (OSCs). We examined the RTA effects on the electrical, optical, and structural properties of the brush painted TIO electrodes. By the direct brushing of TIO nanoparticle ink and rapid thermal annealing (RTA), we can simply obtain TIO electrodes with a low sheet resistance of 28.25 Ohm/square and a high optical transmittance of 85.48% under atmospheric ambient conditions. Furthermore, improvements in the connectivity of the TIO nano-particles in the top region during the RTA process play an important role in reducing the resistivity of the brush-painted TIO anode. In particular, the brush painted TIO films showed a much higher mobility ($33.4cm^2/V-s$) than that of previously reported solution-process transparent oxide films ($1{\sim}5cm^2/V-s$) due to the effects of the Ti dopant with higher Lewis acid strength (3.06) and the reduced contact resistance of TIO nanoparticles. The OSCs fabricated on the brush-painted TIO films exhibited cell-performance with an open circuit voltage (Voc) of 0.61 V, shot circuit current (Jsc) of $7.90mA/cm^2$, fill factor (FF) of 61%, and power conversion efficiency (PCE) of 2.94%. This indicates that brush-painted TIO film is a promising cost-effective transparent electrode for printing-based OSCs with its simple process and high performance.

  • PDF