• Title/Summary/Keyword: Oxide Films

Search Result 2,388, Processing Time 0.029 seconds

Nd:YVO4 Laser Patterning of Various Transparent Conductive Oxide Thin Films on Glass Substrate at a Wavelength of 1,064 nm

  • Wang, Jian-Xun;Kwon, Sang Jik;Cho, Eou Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.59-62
    • /
    • 2013
  • At an infra-red (IR) wavelength of 1,064 nm, a diode-pumped Q-switched $Nd:YVO_4$ laser was used for the direct patterning of various transparent conductive oxide (TCO) thin films on glass substrate. With various laser beam conditions, the laser ablation results showed that the indium tin oxide (ITO) film was removed completely. In contrast, zinc oxide (ZnO) film was not etched for any laser beam conditions and indium gallium zinc oxide (IGZO) was only ablated with a low scanning speed. The difference in laser ablation is thought to be due to the crystal structures and the coefficient of thermal expansion (CTE) of ITO, IGZO, and ZnO. The width of the laser-patterned grooves was dependent on the film materials, the repetition rate, and the scanning speed of the laser beam.

Characteristics of HfO2-Al2O3 Gate insulator films for thin Film Transistors by Pulsed Laser Deposition

  • Hwang, Jae Won;Song, Sang Woo;Jo, Mansik;Han, Kwang-hee;Kim, Dong woo;Moon, Byung Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.304.2-304.2
    • /
    • 2016
  • Hafnium oxide-aluminum oxide (HfO2-Al2O3) dielectric films have been fabricated by Pulsed Laser Deposition (PLD), and their properties are studied in comparison with HfO2 films. As a gate dielectric of the TFT, in spite of its high dielectric constant, HfO2 has a small energy band gap and microcrystalline structure with rough surface characteristics. When fabricated by the device, it has the drawback of generating a high leakage current. In this study, the HfAlO films was obtained by Pulsed Laser Deposition with HfO2-Al2O3 target(chemical composition of (HfO2)86wt%(Al2O3)14wt%). The characteristics of the thin Film have been investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The X-ray diffraction studies confirmed that the HfAlO has amorphous structure. The RMS value can be compared to the surface roughness via AFM analysis, it showed HfAlO thin Film has more lower properties than HfO2. The energy band gap (Eg) deduced by spectroscopic ellipsometer was increased. HfAlO films was expected to improved the interface quality between channel and gate insulator. Apply to an oxide thin Film Transistors, HfAlO may help improve the properties of device.

  • PDF

Metal Oxide-Based Heterojunction Broadband Photodetector (산화물 반도체 기반의 이종접합 광 검출기)

  • Lee, Sang-eun;Lee, Gyeong-Nam;Ye, Sang-cheol;Lee, Sung-ho;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.165-170
    • /
    • 2018
  • In this study, double-layered TCO (transparent conductive oxide) films were produced by depositing two distinct TCO materials: $SnO_2$ works as an n-type layer and ITO (indium-doped tin oxide) serves as a transparent conductor. Both transparent conductive oxide-films were sequentially deposited by sputtering. The electrical and optical properties of single-layered TCO films ($SnO_2$) and double-layered TCO ($ITO/SnO_2$) films were investigated. A TCO-embedding photodetector was realized through the formation of an $ITO/SnO_2/p-Si/Al$ layered structure. The remarkably high rectifying ratio of 400.64 was achieved with the double-layered TCO device, compared to 1.72 with the single-layered TCO device. This result was attributed to the enhanced electrical properties of the double-layered TCO device. With respect to the photoresponses, the photocurrent of the double-layered TCO photodetector was significantly improved: 1,500% of that of the single-layered TCO device. This study suggests that, due to the electrical and optical benefits, double-layered TCO films are effective for enhancing the photoresponses of TCO photodetectors. This provides a useful approach for the design of photoelectric devices, including solar cells and photosensors.

Characterization of Selectively Absorbing Properties of Indium Tin Oxide Thin Films by UV-VIS-IR Spectroscopy (UV-VIS-IR 분광법에 의한 산화 인듐 주석 박막의 선택적 투과 흡수 특성 관찰)

  • Lee, Jeon-Kook;Lee, Dong-Heon;Cho, Nam-Hee
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.135-142
    • /
    • 1992
  • Indium tin oxide(ITO) films coated on the window glass selectively transmit the solar energy and infrared. We call this system passive solar collectors. Selectively absorbing properties of sol gel dip coated ITO films were characterized by UV-VIS-NIR spectroscopy. The effects of heat treating temperature, time, atmosphere, substrate and barrier layers are concerned. Indium tin oxide films heat-treated at $500^{\circ}C$ in a reducing atmosphere show intrinsic properties. Efficiency of solar energy transmittance was enhanced by coating of $SiO_2-ZrO_2$ as an alkali ion barrier layer. Energy was saved by the double layers of $SiO_2-ZrO_2$ and ITO since solar energy is transmitted and heat generated inside(${\lambda}$ > 2700nm) is reflected.

  • PDF

Effect of Indium Zinc Oxide Transparent Electrode on Power Conversion Efficiency of Flexible Dye-Sensitized Solar Cells (플렉시블 염료 감응형 솔라셀의 효율에 미치는 Indium Zinc Oxide 투명전극의 영향)

  • Lee, Do Young;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • IZO thin films have been deposited on poly(ethylene terephthalate) flexible substrate under varying radio frequency (rf) power, process pressure and thickness of IZO films using rf magnetron sputtering under $Ar/O_2$ gas mix. As the process pressure increased, the deposition rate was slightly increased and the transmittance showed little change, but the resistivity was increased. With increasing rf power, the great increase in deposition rate was observed but the transmittance showed a slight change only, and the resistivity was decreased. In addition, an attempt was made to find the optimal thickness of IZO films under varying the thickness of IZO films at the process conditions of 1 mTorr pressure and 90 W rf power, which showed lowest resistivity. IZO thin films with the thickness of $1,500{\AA}$ showed lowest resistivity and also showed highest transmittance around the wavelength zone of the maximum absorption. The power conversion efficiency of solar cells fabricated using various transparent electrodes with different thicknesses were measured and the solar cell with IZO electrode of $1,500{\AA}$ showed the maximum conversion-efficiency of 2.88 %.

Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties (Indium Tin Oxide (ITO) 투광성 박막의 제조 및 전자파 차폐특성)

  • Kim, Yeong-Sik;Jeon, Yong-Su;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1055-1061
    • /
    • 1999
  • Indium Tin Oxide (ITO) films were fabricated by vacuum deposition technique and their microwave shielding properties were investigated for the application to the transparent shield material. The vacuum coating was conducted in a RF co-sputtering machine. The film composition and structure associated with the sputtering conditions (argon and oxygen pressure. substrate temperature. RF input power) were investigated for the attainment of high electrical conductivity and good transparency. The electrical conductivity of IT0 films fabricated under the optimum deposition conditions (substrate temperature : $300^{\circ}C$. Ar flow rate : 20 sccm, Oxygen flow rate : 10 sccm, In/Sn input power : 50/30 W) showed 5.6$\times10^4$mho/m. The optical transparency is also considerably good. The microwave shielding properties including the dominant shielding mechanism are investigated from the electrical conductivity, thickness and skin depth of the ITO films. The total shielding effectiveness is then estimated to be 26 dB, which provides a suggestion that the IT0 films can be effectively used as the transparent shield material.

  • PDF

The Effect of Zn/Sn Different Raito of InZnSnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터를 사용하여 증착한 IZTO 박막의 Zn/Sn 비율에 따른 효과)

  • Kim, Ki Hwan;Putri, Maryane;Koo, Chang Young;Lee, Jung-A;Kim, Jeong-Joo;Lee, Hee Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.591-596
    • /
    • 2013
  • Indium Zinc Tin Oxide (IZTO) thin films were developed as an alternative to Indium Tin Oxide (ITO) thin films. ITO material which has been acknowledged with its low resistivity and optical transparency of 85-90% has been used as major transparent conducting oxide (TCO) materials. However, due to the limited source, high price, and instability problems at high temperature of indium, many researches has been focused on indium-saving TCO materials. Mason Group of Northwestern University was reported to expand the solubility limit up to 40% by co-doping with 1:1 ratio of $Zn^{+2}$ and $Sn^{+4}$ ions. In this study, the properties of IZTO thin films corresponding to Zn/Sn different ratio were investigated. In addition, the effect of substrate temperature variable to the structural, optical and electrical properties of IZTO thin films was investigated.

Characteristics of an AZO/Ag/AZO Transparent Conducting Electrode Fabricated by Magnetron Sputtering for Application in Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells (Cu2ZnSn(S,Se)4 (CZTSSe) 박막 태양전지 적용을 위한 마그네트론 스퍼터링으로 증착된 AZO/Ag/AZO 투명전극의 특성)

  • Lee, Dong Min;Jang, Jun Sung;Kim, Jihun;Lee, InJae;Lee, Byeong Hoon;Jo, Eunae;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.285-291
    • /
    • 2020
  • Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 ㎠/Vs and low resistivity and sheet resistance of 3.5810-5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65 % in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51 % efficiency by improving the short-circuit current density and fill factor to 27.7 mV/㎠ and 62 %, respectively.

The Effect of the Oxygen Flow Rate on the Electronic Properties and the Local Structure of Amorphous Tantalum Oxide Thin Films

  • Denny, Yus Rama;Lee, Sunyoung;Lee, Kangil;Kang, Hee Jae;Yang, Dong-Seok;Heo, Sung;Chung, Jae Gwan;Lee, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.398-398
    • /
    • 2013
  • The electronic properties and the local structure of tantalum oxide thin film with variation of oxygen flow rate ranging from 9.5 to 16 sccm (standard cubic centimeters per minute) have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results show that the Ta4f spectrum for all films consist of the strong spin-orbit doublet $Ta4f_{7/2}$ and $Ta4f_{5/2}$ with splitting of 1.9 eV. The oxygen flow rate of the film results in the appearance of new features in the Ta4f at binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV, these peaks attribute to $Ta^{1+}$, $Ta^{2+}$, $Ta^{4+}$/$Ta^{2+}$, and $Ta^{5+}$, respectively. Thus, the presence of non-stoichiometric state from tantalum oxide ($TaO_x$) thin films could be generated by the oxygen vacancies. The REELS spectra suggest the decrease of band gap for tantalum oxide thin films with increasing the oxygen flow rate. The absorption coefficient ${\mu}$ and its fine structure were extracted from the fluorescence mode of extended X-ray absorption fine structure (EXAFS) spectra. In addition, bond distances (r), coordination numbers (N) and Debye-Waller factors (${\sigma}^2$) each film were determined by a detailed of EXAFS data analysis. EXAFS spectrapresent both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the increase of oxygen flow rate.

  • PDF

Influence of Sputtering Conditions on Properties of Copper Oxide Thin Films (스퍼터링 공정 조건이 산화 구리 박막 특성에 미치는 영향)

  • Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 2017
  • The fossil fuel power consumption generates $CO_2$, which causes the problems such as global warming. Also, the increase in energy consumption has accelerated the depletion of the fossil fuels, and renewable energy is attracting attention. Among the renewable energies, the solar energy gets a lot of attention as the infinite clean energy source. But, the supply level of solar cell is insignificant due to high cost of generation of electric power in comparison with fossil fuels. Thus several researchers are recently doing the research on ultra-low-cost solar cells. Also, $Cu_2O$ is one of the applied materials as an absorption layer in ultra-low-cost solar cells. Cuprous oxide ($Cu_2O$) is highly desirable semiconductor oxide for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and a high absorption coefficient that absorbs visible light of wavelengths up to 650 nm. In addition, $Cu_2O$ has several advantages such as non-toxicity, low cost and can be prepared with simple and cheap methods on large scale. In this work, we fabricated the $Cu_2O$ thin films by reactive sputtering method. The films were deposited with a Cu target with variable parameters such as substrate temperature, rf-power, and annealing condition. Finally, we confirmed the structural properties of thin films by XRD and SEM.