• Title/Summary/Keyword: Oxidative stress

Search Result 3,408, Processing Time 0.029 seconds

Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism

  • Ju, Sunghee;Seo, Ji Yeon;Lee, Seung Kwon;Oh, Jisun;Kim, Jong-Sang
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.108-118
    • /
    • 2021
  • Background: Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be metabolized to a biologically active substance, compound K. Previous research showed that compound K could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable level of compound K has cognitive improving and neuroprotective effects. Methods: A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains were collected, histologically examined (hematoxylin and eosin staining), and the expressions of antioxidant proteins analyzed by western blot. Results: Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg body weight reversed scopolamine-induced learning and memory deficits. Histological examination demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hippocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity by decreasing the intracellular levels of reactive oxygen species. Conclusion: These findings suggest that HRGE administration can effectively alleviate hippocampus-mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.

Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages

  • Kim, Ga-Young;Jeong, Hana;Yoon, Hye-Young;Yoo, Hye-Min;Lee, Jae Young;Park, Seok Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.640-645
    • /
    • 2020
  • Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.

A Review of the Neuroprotective Effects of Cinnamon in Experimental Studies on Parkinson's Disease (파킨슨병 관련 실험 연구에서 육계의 신경 보호효과에 대한 고찰)

  • Heo, Hyemin;Han, Juhee;Jeong, Minjeong;Kim, Hongjun;Jang, Insoo
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.1089-1099
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of cinnamon on the treatment of Parkinson's disease (PD) and to introduce its use in Korea. Method: We searched the experimental studies in electronic databases (PubMed, CNKI, Wanfang, CiNii, J-STAGE, Science ON, and OASIS) using the key search terms "cinnamic acid", "cinnamon", "cinnamomum", "Parkinson's disease", "Parkinson disease", "Parkinsonism", and "dopamine". This study only involved experimental studies (in vivo and in vitro) that adopted cinnamon as a single administration and measured indicators relating to Parkinson's disease, including parkin, tyrosine hydroxylase (TH), and dopamine. Results: A Total of 11 literature studies were selected, and they all showed that treatment with cinnamon has a neuroprotective effect. Cinnamon activated neuroprotective factors and restored neurotransmitters and it reduced the rate of oxidative stress and inflammation in neurons. As a result, cell viability was upregulated, while cell apoptosis and neurodegeneration were downregulated. Five in vivo studies, through behavioral tests, also confirmed that cinnamon recovers locomotor function in PD models. Conclusion: We identified that cinnamon is an effective neural protector and improves motor performance in behavioral testing in the experimental PD studies.

Characterization of Mulberry Root Bark Extracts (Morus alba L.) Based on the Extraction Temperature and Solvent

  • Lee, Sora;Kim, Soo Hyun;Jo, You-Young;Kim, Seong-Wan;Kim, Hyun-Bok;Kweon, HaeYong;Ju, Wan-Taek
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.41 no.2
    • /
    • pp.36-44
    • /
    • 2020
  • Mulberry root bark is one of potential plant sources for antioxidant materials which can be used for the relief of oxidative stress. To explore the effects of solvent type and temperature on the structural characteristics and antioxidant activity of the root bark extracts, we prepared various extracts of mulberry root bark (Morus alba L.) using 0 - 100 % ethanol (EtOH) at RT - 100℃. EtOH concentration and temperature critically affected the extraction yields, the content of bioactive components, and antioxidant activity of the extracts. Use of high content of EtOH solvent and low temperature resulted in the low extraction yield. Meanwhile, it was revealed that the extract prepared using absolute EtOH at room temperature contained polyphenols and flavonoids with the highest contents among other extracts. Interestingly, the temperature differently affected the polyphenol and flavonoid contents according to the solvent types. In the case of 30% EtOH solvent, polyphenol and flavonoid contents increased with an increase in temperature, whereas in the case of 70 and 100 % EtOH, these contents decreased. Using the radical scavenging assay, it was confirmed that the 100% EtOH extracts had higher antioxidant activity compared to distilled water (DW) extracts regardless of temperature. Also, heating might extract more antioxidant components from the root bark. Especially, the extract prepared using 30% EtOH solvent at 100℃ showed the highest antioxidant activity. Taken together, these experimental results imply that the extraction parameters should be designed carefully considering the productivity, the extracted bioactive components, and antioxidant activity.

A Review on the Pain and Depression Comorbidity Animal Models (통증과 우울증의 병합 동물모델에 대한 최신 연구 동향 분석)

  • Song, Ji-Hye;Kook, Hye-Jung;Park, Byung-Jin;Kim, Song-Yi;Park, Ji-Yeun
    • Korean Journal of Acupuncture
    • /
    • v.38 no.2
    • /
    • pp.75-99
    • /
    • 2021
  • Objectives : The purpose of this study is to analyze animal behavioral changes and related neurobiological mechanisms in recent studies using animal models with pain and depression. Methods : We conducted database search in Pubmed, NDSL, and EMBASE up to January 2021. Included studies were classified as depression-like behavior observed in pain model, pain-like behavior observed in depression model, and pain and depression comorbidity model. The results of pain- and depression-like behaviors, the changes of neurobiological mechanisms, and the treatment methods such as drugs, natural substance-derived chemicals, or acupuncture were analyzed. Results : We included 124 studies (81 studies in depression-like behavior observed in pain model, 19 studies in pain-like behavior observed in depression model, and 24 studies in pain and depression comorbidity model). Pain and depression comorbidity animal models were induced using various methods by drugs or surgery. Von frey test, a method for evaluating mechanical allodynia was the most commonly used for measuring pain-like behavior and the forced swimming test was the most commonly used for measuring depression-likes behavior. The changes of neurobiological factors, such as decrease of 5-hydroxytryptamine and increase of oxidative stress and pro-inflammation cytokines were generally changed in the frontal cortex, hippocampus, thalamus, and spinal cord in all types of models. For treating pain and depression-like behaviors, various types of drugs such as antidepressant, tranquilizer, analgesic, and natural substance-derived chemicals were used. Acupuncture treatment was used in 4 studies. Conclusions : In the future, more diverse studies on the combined model of pain and depression need to be conducted. In addition, it is necessary to establish a mechanistic basis for the development of various treatments by identifying the common mechanisms of pain and depression.

Lower Nutrient Intakes and Periodontitis: Findings from the Korea National Health and Nutrition Examination Surveys

  • Lee, Min-Sun;Han, Dong-Hun;Kim, Mi-Sun
    • Journal of Korean Dental Hygiene Science
    • /
    • v.4 no.1
    • /
    • pp.39-51
    • /
    • 2021
  • Background: Limited information is available regarding the associations of various nutrients and periodontitis in Korea. Furthermore, these associations have been controversial in previous studies. Therefore, the present study aimed to evaluate the associations between several nutrients and periodontitis. Methods: Pooled data from the 2007~2010 and 2012 Korea National Health and Nutrition Examination Surveys (KNHANES) were used for the present study. Periodontitis was defined using the World Health Organization (WHO) Community Periodontal Index. All participants completed the Food Frequency Questionnaire (FFQ), which was analyzed using CAN-Pro 4.0. Vitamins A, B1, B2, and C, iron, phosphorus, calcium, and protein were selected for analysis. Multiple logistic regression analyses were used to estimate the odds ratios (ORs) for periodontitis. Results: Lower intake of phosphorus (adjusted odds ratio [AOR] = 1.86), calcium (AOR = 1.25), and protein (AOR = 1.52) were associated with periodontitis in males, and lower intake of vitamins A (AOR = 1.32), B1 (AOR = 1.21), B2 (AOR = 1.24), and C (AOR = 1.21), iron (AOR = 1.25), phosphorus (AOR = 1.33), and protein (AOR = 1.27) showed significant relationships with periodontitis in females. In the sociodemographic, somatic, and health behavior-adjusted models, lower phosphorus (AOR = 2.68) and protein (AOR = 1.68) intake in younger males, and lower vitamin A intake (AOR = 1.37) in middle-aged females were significantly associated with periodontitis. Conclusions: The results of the present study demonstrated a significant association between periodontitis and nutrient intake. To avoid an insufficient nutrient supply for a patient with periodontal disease, the patient's diet should be closely monitored.

Protective effect of Citri Unshius Pericarpium against cadmium-induced liver damage in mice (카드뮴으로 인한 마우스 간 손상에 대한 진피의 보호효과)

  • Noh, Gyu Pyo;Lee, Jong Rok;Kim, Jae Kwang;Park, Sang Mi;Park, Sook Jahr;Kim, Sang Chan
    • The Korea Journal of Herbology
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Objective : Citri Unshius Pericarpium (Citrus unshiu peel) has been used in Korean medicine to treat indigestion, vomiting, coughing and phlegm. This study investigated the hepatoprotective effect of ethanol extract of Citrus unshiu peel (CEE) in cadmium (CdCl2)-treated mouse model. Methods : CEE was dissolved in water and administered orally to mice once a day for 7 consecutive days. The mice were then exposed to a single intraperitoneal (i.p.) injection of cadmium (4 mg/kg body weight) to induce acute hepatotoxicity. At the end of the experiment, blood and liver tissue samples were collected, analyzed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), and histopathological evaluation. Liver damage was assessed as the percentage of degenerative areas of the hepatic parenchyma, the number of degenerative hepatocytes, and the number of infiltrated inflammatory cells. Results : In cadmium-treated rats, pretreatment with CEE significantly reduced the serum ALT and AST levels associated with liver damage. Histopathologically, CEE prevented degenerative changes on the hepatic tissues including confluent necrosis, congestions and infiltration of inflammatory cells. CEE also reduced the elevation of oxidative stress markers (nitrotyrosine and 4-hydroxynonenal) and apoptosis markers (cleaved caspase-3 and cleaved PARP) positive cells. PARP protein expression in liver tissue was also restored by CEE. Conclusion : This study showed that CEE exerted antioxidant and anti-apoptotic effects against cadmium-induced liver injury. Thus, it can be concluded that CEE can be used to prevent liver damage caused by cadmium.

The Membrane-Bound Protein, MoAfo1, Is Involved in Sensing Diverse Signals from Different Surfaces in the Rice Blast Fungus

  • Sadat, Md Abu;Han, Joon-Hee;Kim, Seongbeom;Lee, Yong-Hwan;Kim, Kyoung Su;Choi, Jaehyuk
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.87-98
    • /
    • 2021
  • To establish an infection, fungal pathogens must recognize diverse signals from host surfaces. The rice blast fungus, Magnaporthe oryzae, is one of the best models studying host-pathogen interactions. This fungus recognizes physical or chemical signals from the host surfaces and initiates the development of an infection structure called appressorium. Here, we found that protein MoAfo1(appressorium formation, MGG_10422) was involved in sensing signal molecules such as cutin monomers and long chain primary alcohols required for appressorium formation. The knockout mutant (ΔMoafo1) formed a few abnormal appressoria on the onion and rice sheath surfaces. However, it produced normal appressoria on the surface of rice leaves. MoAfo1 localized to the membranes of the cytoplasm and vacuole-like organelles in conidia and appressoria. Additionally, the ΔMoafo1 mutant showed defects in appressorium morphology, appressorium penetration, invasive growth, and pathogenicity. These multiple defects might be partially due to failure to respond properly to oxidative stress. These findings broaden our understanding of the fungal mechanisms at play in the recognition of the host surface during rice blast infection.

1-Methoxylespeflorin G11 Protects HT22 Cells from Glutamate-Induced Cell Death through Inhibition of ROS Production and Apoptosis

  • Lee, Phil Jun;Pham, Chau Ha;Thuy, Nguyen Thi Thanh;Park, Hye-Jin;Lee, Sung Hoon;Yoo, Hee Min;Cho, Namki
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.217-225
    • /
    • 2021
  • This study aimed to investigate the neuroprotective effects of 1-methoxylespeflorin G11 (MLG), a pterocarpan, against glutamate-induced neurotoxicity in neuronal HT22 hippocampal cells. The protective effects of MLG were evaluated using MTT assay and microscopic analysis. The extent of apoptosis was studied using flow cytometric analysis performed on the damaged cells probed with annexin V/propidium iodide. Moreover, mitochondrial reactive oxygen species (ROS) were assessed using flow cytometry through MitoSOXTM Red staining. To determine mitochondrial membrane potential, staining with tetramethylrhodamine and JC-1 was performed followed by flow cytometry. The results demonstrated that MLG attenuates glutamate-induced apoptosis in HT22 cells by inhibiting intracellular ROS generation and mitochondrial dysfunction. Additionally, MLG prevented glutamate-induced apoptotic pathway in HT22 cells through upregulation of Bcl-2 and downregulation of cleaved PARP-1, AIF, and phosphorylated MAPK cascades. In addition, MLG treatment induced HO-1 expression in HT22 cells. These results suggested that MLG exhibits neuroprotective effects against glutamate-induced neurotoxicity in neuronal HT22 cells by inhibiting oxidative stress and apoptosis.

Inhibitory Effect of Lonicera japonica Thunb. Flower Buds against Glutamate-Induced Cytotoxicity in HT22 Hippocampal Neurons (HT22 신경세포에서 금은화 추출물에 의한 글루타메이트 유도 산화적 스트레스 및 세포사멸 억제 효과)

  • Jun, Chang-Hwan;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.38 no.1
    • /
    • pp.32-42
    • /
    • 2021
  • Objectives : In this study, we investigated the neuroprotective effects of ethanol extract of Lonicera japonica flower buds (EELJ) on glutamate-induced neurotoxicity in mouse hippocampus-derived neuronal HT22 cells. Methods : After analyzing the cytoprotective effect of EELJ on glutamate in HT22 cells, the inhibitory effect of apoptosis was studied using flow cytometry. In order to analyze the antioxidant efficacy of EELJ, the levels of reactive oxygen species (ROS) and glutathione (GSH) were investigated, and the effects on the activities of superoxide dismutase (SOD) and catalase (CAT) were also analyzed. Furthermore, the effect of EELJ on the expression of apoptosis regulators such as Bax and Bcl-2 in glutamate-treated HT22 cells was investigated. Results : According the current results, pretreatment with EELJ significantly reduced glutamate-induced loss of cell viability and release of lactate dehydrogenase. EELJ also markedly attenuated glutamate-induced generation of intracellular ROS, which was associated with increased levels of GSH, and activity of SOD and CAT in glutamate-stimulated HT22 cells. In addition, EELJ was strikingly inhibited glutamate-induced apoptosis in HT22 cells. Furthermore, the expression of pro-apoptotic Bax was increased and the expression of anti-apoptotic Bcl-2 was decreased in glutamate-treated HT22 cells, while in the presence of EELJ, their expressions were maintained at the control levels. Conclusions : These findings indicate that EELJ protects glutamate-induced cytotoxicity in HT22 hippocampal neurons through antioxidant activity. Therefore, although identification of biologically active substances of EELJ and re-evaluation through animal experiments is necessary, this natural substance is a promising candidate for further research in preventing and treating oxidative stress-mediated neurodegenerative diseases.