DOI QR코드

DOI QR Code

A Review on the Pain and Depression Comorbidity Animal Models

통증과 우울증의 병합 동물모델에 대한 최신 연구 동향 분석

  • Received : 2021.05.17
  • Accepted : 2021.06.20
  • Published : 2021.06.27

Abstract

Objectives : The purpose of this study is to analyze animal behavioral changes and related neurobiological mechanisms in recent studies using animal models with pain and depression. Methods : We conducted database search in Pubmed, NDSL, and EMBASE up to January 2021. Included studies were classified as depression-like behavior observed in pain model, pain-like behavior observed in depression model, and pain and depression comorbidity model. The results of pain- and depression-like behaviors, the changes of neurobiological mechanisms, and the treatment methods such as drugs, natural substance-derived chemicals, or acupuncture were analyzed. Results : We included 124 studies (81 studies in depression-like behavior observed in pain model, 19 studies in pain-like behavior observed in depression model, and 24 studies in pain and depression comorbidity model). Pain and depression comorbidity animal models were induced using various methods by drugs or surgery. Von frey test, a method for evaluating mechanical allodynia was the most commonly used for measuring pain-like behavior and the forced swimming test was the most commonly used for measuring depression-likes behavior. The changes of neurobiological factors, such as decrease of 5-hydroxytryptamine and increase of oxidative stress and pro-inflammation cytokines were generally changed in the frontal cortex, hippocampus, thalamus, and spinal cord in all types of models. For treating pain and depression-like behaviors, various types of drugs such as antidepressant, tranquilizer, analgesic, and natural substance-derived chemicals were used. Acupuncture treatment was used in 4 studies. Conclusions : In the future, more diverse studies on the combined model of pain and depression need to be conducted. In addition, it is necessary to establish a mechanistic basis for the development of various treatments by identifying the common mechanisms of pain and depression.

Keywords

Acknowledgement

This work was supported by the Daejeon University Research Grants (2018).

References

  1. Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain. 2020 ; 161(9) : 1976-82. https://doi.org/10.1097/j.pain.0000000000001939
  2. Miller LR, Cano A. Comorbid chronic pain and depression: who is at risk? J Pain. 2009 ; 10(6) : 619-27. https://doi.org/10.1016/j.jpain.2008.12.007
  3. Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review. Arch Intern Med. 2003 ; 163(20) : 2433-45. https://doi.org/10.1001/archinte.163.20.2433
  4. Kim SJ, Kim WS, Kang YK, Lee SH, Cho SH. Influencing Psychologic Factors and Stress in Patients with Chronic Pain. J Korean Acad Rehabil Med. 2000 ; 24(6) : 1161-7.
  5. Duenas M, Ojeda B, Salazar A, Mico JA, Failde I. A review of chronic pain impact on patients, their social environment and the health care system. J Pain Res. 2016 ; 9 : 457-67. https://doi.org/10.2147/JPR.S105892
  6. Doan L, Manders T, Wang J. Neuroplasticity underlying the comorbidity of pain and depression. Neural Plast. 2015 ; 2015 : 504691. https://doi.org/10.1155/2015/504691
  7. Goesling J, Clauw DJ, Hassett AL. Pain and depression: an integrative review of neurobiological and psychological factors. Curr Psychiatry Rep. 2013 ; 15(12) : 421. https://doi.org/10.1007/s11920-013-0421-0
  8. Giesecke T, Gracely RH, Williams DA, Geisser ME, Petzke FW, Clauw DJ. The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum. 2005 ; 52(5) : 1577-84. https://doi.org/10.1002/art.21008
  9. Racz I, Nent E, Erxlebe E, Zimmer A. CB1 receptors modulate affective behaviour induced by neuropathic pain. Brain Res Bull. 2015 ; 114 : 42-8. https://doi.org/10.1016/j.brainresbull.2015.03.005
  10. Jang JH, Kim YK, Jung WM, Kim HK, Song EM, Kim HY, et al. Acupuncture Improves Comorbid Cognitive Impairments Induced by Neuropathic Pain in Mice. Front Neurosci. 2019 ; 13 : 995. https://doi.org/10.3389/fnins.2019.00995
  11. Lee MJ, Ryu JS, Won SK, Namgung U, Jung J, Lee SM, et al. Effects of Acupuncture on Chronic Stress-Induced Depression-Like Behavior and Its Central Neural Mechanism. Front Psychol. 2019; 10: 1353. https://doi.org/10.3389/fpsyg.2019.01353
  12. Li JX. Pain and depression comorbidity: a preclinical perspective. Behav Brain Res. 2015 ; 276 : 92-8. https://doi.org/10.1016/j.bbr.2014.04.042
  13. Rajkumar R, Pandey DK, Mahesh R, Radha R. 1-(m-Chlorophenyl)piperazine induces depressogenic-like behaviour in rodents by stimulating the neuronal 5-HT(2A) receptors: proposal of a modified rodent antidepressant assay. Eur J Pharmacol. 2009 ; 608(1-3) : 32-41. https://doi.org/10.1016/j.ejphar.2009.02.041
  14. Birmann PT, Sousa FSS, Domingues M, Bruning CA, Vieira BM, Lenardao EJ, et al. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole promotes recovery of neuropathic pain and depressive-like behavior induced by partial constriction of the sciatic nerve in mice. J Trace Elem Med Biol. 2019 ; 54 : 126-33. https://doi.org/10.1016/j.jtemb.2019.04.014
  15. Wu YY, Jiang YL, He XF, Zhao XY, Shao XM, Sun J, et al. 5-HT in the dorsal raphe nucleus is involved in the effects of 100-Hz electro-acupuncture on the pain-depression dyad in rats. Exp Ther Med. 2017 ; 14(1) : 107-14. https://doi.org/10.3892/etm.2017.4479
  16. Li Y, Zhu J, Zheng Q, Qian Z, Zhang L, Wei C, et al. 5-HT1A autoreceptor in dorsal raphe nucleus mediates sensitization of conditioned place preference to cocaine in mice experienced with chronic pain. Neuroreport. 2019 ; 30(9) : 681-7. https://doi.org/10.1097/WNR.0000000000001260
  17. Wu J, Wang Y, Cui W, Zhou W, Zhao X. 5-HT1A receptor-mediated attenuation of heat hyperalgesia and mechanical allodynia by chrysin in mice with experimental mononeuropathy. Reg Anesth Pain Med. 2020 ; 45(8) : 610-9. https://doi.org/10.1136/rapm-2020-101472
  18. Gregoire S, Neugebauer V. 5-HT2CR blockade in the amygdala conveys analgesic efficacy to SSRIs in a rat model of arthritis pain. Mol Pain. 2013 ; 9 : 41. https://doi.org/10.1186/1744-8069-9-41
  19. Liu YT, Shao YW, Yen CT, Shaw FZ. Acid-induced hyperalgesia and anxio-depressive comorbidity in rats. Physiol Behav. 2014 ; 131 : 105-10. https://doi.org/10.1016/j.physbeh.2014.03.030
  20. Aissouni Y, El Guerrab A, Hamieh AM, Ferrier J, Chalus M, Lemaire D, et al. Acid-Sensing Ion Channel 1a in the amygdala is involved in pain and anxiety-related behaviours associated with arthritis. Sci Rep. 2017 ; 7 : 43617. https://doi.org/10.1038/srep43617
  21. Zhang GF, Wang J, Han JF, Guo J, Xie ZM, Pan W, et al. Acute single dose of ketamine relieves mechanical allodynia and consequent depression-like behaviors in a rat model. Neurosci Lett. 2016 ; 631 : 7-12. https://doi.org/10.1016/j.neulet.2016.08.006
  22. Sousa FSS, Birmann PT, Baldinotti R, Fronza MG, Balaguez R, Alves D, et al. α-(phenylselanyl) acetophenone mitigates reserpine-induced pain-depression dyad: Behavioral, biochemical and molecular docking evidences. Brain Res Bull. 2018 ; 142 : 129-37. https://doi.org/10.1016/j.brainresbull.2018.07.007
  23. Sousa FSS, Birmann PT, Balaguez R, Alves D, Bruning CA, Savegnago L. α-(phenylselanyl) acetophenone abolishes acute restraint stress induced-comorbid pain, depression and anxiety-related behaviors in mice. Neurochem Int. 2018 ; 120 : 112-20. https://doi.org/10.1016/j.neuint.2018.08.006
  24. Xie ZM, Wang XM, Xu N, Wang J, Pan W, Tang XH, et al. Alterations in the inflammatory cytokines and brain-derived neurotrophic factor contribute to depression-like phenotype after spared nerve injury: improvement by ketamine. Sci Rep. 2017 ; 7(1) : 3124. https://doi.org/10.1038/s41598-017-03590-3
  25. Nyuyki KD, Cluny NL, Swain MG, Sharkey KA, Pittman QJ. Altered Brain Excitability and Increased Anxiety in Mice With Experimental Colitis: Consideration of Hyperalgesia and Sex Differences. Front Behav Neurosci. 2018 ; 12 : 58. https://doi.org/10.3389/fnbeh.2018.00058
  26. Burke NN, Geoghegan E, Kerr DM, Moriarty O, Finn DP, Roche M. Altered neuropathic pain behaviour in a rat model of depression is associated with changes in inflammatory gene expression in the amygdala. Genes, Brain, and Behavior. 2013 ; 12(7) : 705-13. https://doi.org/10.1111/gbb.12080
  27. Rodriguez-Gaztelumendi A, Rojo ML, Pazos A, Diaz A. An altered spinal serotonergic system contributes to increased thermal nociception in an animal model of depression. Exp Brain Res. 2014 ; 232(6) : 1793-803. https://doi.org/10.1007/s00221-014-3871-7
  28. Amorim D, David-Pereira A, Pertovaara A, Almeida A, Pinto-Ribeiro F. Amitriptyline reverses hyperalgesia and improves associated mood-like disorders in a model of experimental monoarthritis. Behav Brain Res. 2014 ; 265 : 12-21. https://doi.org/10.1016/j.bbr.2014.02.003
  29. Alsalem M, Altarifi A, Haddad M, Azab B, Kalbouneh H, Imraish A, et al. Analgesic Effects and Impairment in Locomotor Activity Induced by Cannabinoid/Opioid Combinations in Rat Models of Chronic Pain. Brain Sci. 2020 ; 10(8) : 523. https://doi.org/10.3390/brainsci10080523
  30. Gadotti VM, Zamponi GW. Anxiolytic effects of the flavonoid luteolin in a mouse model of acute colitis. Mol Brain. 2019 ; 12(1) : 114. https://doi.org/10.1186/s13041-019-0539-z
  31. Liu SB, Zhao R, Li XS, Guo HJ, Tian Z, Zhang N, et al. Attenuation of reserpine-induced pain/depression dyad by gentiopicroside through downregulation of GluN2B receptors in the amygdala of mice. Neuromolecular Medicine. 2014 ; 16(2) : 350-9. https://doi.org/10.1007/s12017-013-8280-8
  32. Pereira-Silva R, Costa-Pereira JT, Alonso R, Serrao P, Martins I, Neto FL. Attenuation of the Diffuse Noxious Inhibitory Controls in Chronic Joint Inflammatory Pain Is Accompanied by Anxiodepressive-Like Behaviors and Impairment of the Descending Noradrenergic Modulation. Int J Mol Sci. 2020 ; 21(8) : 2973. https://doi.org/10.3390/ijms21082973
  33. Aguilar-Avila DS, Flores-Soto ME, Tapia-Vazquez C, Pastor-Zarandona OA, Lopez-Roa RI, Viveros-Paredes JM. β-Caryophyllene, a Natural Sesquiterpene, Attenuates Neuropathic Pain and Depressive-Like Behavior in Experimental Diabetic Mice. J Med Food. 2019 ; 22(5) : 460-8. https://doi.org/10.1089/jmf.2018.0157
  34. Dey A, Chatterjee SS, Kumar V. A bioassay system for pharmacological standardization of Withania somnifera derived herbal remedies. TANG. 2019 ; 9(1) : 1-13. https://doi.org/10.5667/tang.2018.0023
  35. Nagakura Y, Oe T, Aoki T, Matsuoka N. Biogenic amine depletion causes chronic muscular pain and tactile allodynia accompanied by depression: A putative animal model of fibromyalgia. Pain. 2009 ; 146(1-2) : 26-33. https://doi.org/10.1016/j.pain.2009.05.024
  36. Carcole M, Zamanillo D, Merlos M, Fernandez-Pastor B, Cabanero D, Maldonado R. Blockade of the Sigma-1 Receptor Relieves Cognitive and Emotional Impairments Associated to Chronic Osteoarthritis Pain. Front Pharmacol. 2019 ; 10 : 468. https://doi.org/10.3389/fphar.2019.00468
  37. Kim H, Chen L, Lim G, Sung B, Wang S, McCabe MF, et al. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J Clin Invest. 2012 ; 122(8) : 2940-54. https://doi.org/10.1172/JCI61884
  38. Barcelon EE, Cho WH, Jun SB, Lee SJ. Brain Microglial Activation in Chronic Pain-Associated Affective Disorder. Front Neurosci. 2019 ; 13 : 213. https://doi.org/10.3389/fnins.2019.00213
  39. Tajerian M, Leu D, Zou Y, Sahbaie P, Li W, Khan H, et al. Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology. 2014 ; 121(4) : 852-65. https://doi.org/10.1097/aln.0000000000000403
  40. Roeckel LA, Massotte D, Olmstead MC, Befort K. CB1 Agonism Alters Addiction-Related Behaviors in Mice Lacking Mu or Delta Opioid Receptors. Front Psychiatry. 2018 ; 9 : 630. https://doi.org/10.3389/fpsyt.2018.00630
  41. Laumet G, Edralin JD, Dantzer R, Heijnen CJ, Kavelaars A. CD3+ T cells are critical for the resolution of comorbid inflammatory pain and depression-like behavior. Neurobiol Pain. 2020 ; 7 : 100043. https://doi.org/10.1016/j.ynpai.2020.100043
  42. Zhu X, Zhou W, Jin Y, Tang H, Cao P, Mao Y, et al. A Central Amygdala Input to the Parafascicular Nucleus Controls Comorbid Pain in Depression. Cell Rep. 2019 ; 29(12) : 3847-58 e5. https://doi.org/10.1016/j.celrep.2019.11.003
  43. Zhao X, Wang C, Zhang JF, Liu L, Liu AM, Ma Q, et al. Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: involvement of supraspinal serotonergic system and GABAA receptor. Psychopharmacology (Berl). 2014; 231(10) : 2171-87. https://doi.org/10.1007/s00213-013-3368-2
  44. Thompson SJ, Pitcher MH, Stone LS, Tarum F, Niu G, Chen X, et al. Chronic neuropathic pain reduces opioid receptor availability with associated anhedonia in rat. Pain. 2018 ; 159(9) : 1856-66. https://doi.org/10.1097/j.pain.0000000000001282
  45. Alba-Delgado C, Llorca-Torralba M, Horrillo I, Ortega JE, Mico JA, Sanchez-Blazquez P, et al. Chronic pain leads to concomitant noradrenergic impairment and mood disorders. Biol Psychiatry. 2013 ; 73(1) : 54-62. https://doi.org/10.1016/j.biopsych.2012.06.033
  46. Liu LY, Zhang RL, Chen L, Zhao HY, Cai J, Wang JK, et al. Chronic stress increases pain sensitivity via activation of the rACC-BLA pathway in rats. Exp Neurol. 2019 ; 313 : 109-23. https://doi.org/10.1016/j.expneurol.2018.12.009
  47. Cai L, He Q, Lu Y, Hu Y, Chen W, Wei L, et al. Comorbidity of Pain and Depression in a Lumbar Disc Herniation Model: Biochemical Alterations and the Effects of Fluoxetine. Front Neurol. 2019 ; 10 : 1022. https://doi.org/10.3389/fneur.2019.01022
  48. Ma J, Li J, Qian M, He N, Cao Y, Liu Y, et al. The comprehensive pathophysiological changes in a novel rat model of post-inflammatory visceral hypersensitivity. FASEB J. 2019 ; 33(12) : 13560-71. https://doi.org/10.1096/fj.201901489R
  49. Li L, Zou Y, Liu B, Yang R, Yang J, Sun M, et al. Contribution of the P2X4 Receptor in Rat Hippocampus to the Comorbidity of Chronic Pain and Depression. ACS Chem Neurosci. 2020 ; 11(24) : 4387-97. https://doi.org/10.1021/acschemneuro.0c00623
  50. Arora V, Kuhad A, Tiwari V, Chopra K. Curcumin ameliorates reserpine-induced pain-depression dyad: behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology. 2011 ; 36(10) : 1570-81. https://doi.org/10.1016/j.psyneuen.2011.04.012
  51. Lax NC, Parker SJ, Hilton EJ, Seliman Y, Tidgewell KJ, Kolber BJ. Cyanobacterial extract with serotonin receptor subtype 7 (5-HT7 R) affinity modulates depression and anxiety-like behavior in mice. Synapse. 2018 ; 72(11) : e22059. https://doi.org/10.1002/syn.22059
  52. D'Aniello A, Luongo L, Romano R, Iannotta M, Marabese I, Boccella S, et al. d-Aspartic acid ameliorates painful and neuropsychiatric changes and reduces beta-amyloid Abeta1-42 peptide in a long lasting model of neuropathic pain. Neurosci Lett. 2017 ; 651 : 151-8. https://doi.org/10.1016/j.neulet.2017.04.041
  53. Jochum T, Boettger MK, Wigger A, Beiderbeck D, Neumann ID, Landgraf R, et al. Decreased sensitivity to thermal pain in rats bred for high anxiety-related behaviour is attenuated by citalopram or diazepam treatment. Behav Brain Res. 2007 ; 183(1) : 18-24. https://doi.org/10.1016/j.bbr.2007.05.022
  54. Shi M, Wang JY, Luo F. Depression shows divergent effects on evoked and spontaneous pain behaviors in rats. J Pain. 2010 ; 11(3) : 219-29. https://doi.org/10.1016/j.jpain.2009.07.002
  55. Hu B, Doods H, Treede R-D, Ceci A. Depression-like behaviour in rats with mononeuropathy is reduced by the CB2-selective agonist GW405833. Pain. 2009 ; 143(3) : 206-12. https://doi.org/10.1016/j.pain.2009.02.018
  56. Bravo L, Mico JA, Rey-Brea R, Perez-Nievas B, Leza JC, Berrocoso E. Depressive-like states heighten the aversion to painful stimuli in a rat model of comorbid chronic pain and depression. Anesthesiology. 2012 ; 117(3) : 613-25. https://doi.org/10.1097/ALN.0b013e3182657b3e
  57. Butkevich IP, Mikhailenko VA, Vershinina EA, Barr GA. Differences Between the Prenatal Effects of Fluoxetine or Buspirone Alone or in Combination on Pain and Affective Behaviors in Prenatally Stressed Male and Female Rats. Front Behav Neurosci. 2019 ; 13 : 125. https://doi.org/10.3389/fnbeh.2019.00125
  58. Wang W, Qi WJ, Xu Y, Wang JY, Luo F. The differential effects of depression on evoked and spontaneous pain behaviors in olfactory bulbectomized rats. Neurosci Lett. 2010 ; 472(2) : 143-7. https://doi.org/10.1016/j.neulet.2010.01.075
  59. Luo C, Zhang YL, Luo W, Zhou FH, Li CQ, Xu JM, et al. Differential effects of general anesthetics on anxiety-like behavior in formalin-induced pain: involvement of ERK activation in the anterior cingulate cortex. Psychopharmacology (Berl). 2015 ; 232(24) : 4433-44. https://doi.org/10.1007/s00213-015-4071-2
  60. Guan S, Shen Y, Ge H, Xiong W, He L, Liu L, et al. Dihydromyricetin Alleviates Diabetic Neuropathic Pain and Depression Comorbidity Symptoms by Inhibiting P2X7 Receptor. Front Psychiatry. 2019; 10: 770. https://doi.org/10.3389/fpsyt.2019.00770
  61. Kremer M, Yalcin I, Goumon Y, Wurtz X, Nexon L, Daniel D, et al. A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J Neurosci. 2018 ; 38(46) : 9934-54. https://doi.org/10.1523/JNEUROSCI.1004-18.2018
  62. Hu B, Doods H, Treede RD, Ceci A. Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neurosci Lett. 2016 ; 619 : 162-7. https://doi.org/10.1016/j.neulet.2016.03.019
  63. Li S, Han J, Wang DS, Feng B, Deng YT, Wang XS, et al. Echinocystic acid reduces reserpine-induced pain/depression dyad in mice. Metabolic Brain Disease. 2016 ; 31(2) : 455-63. https://doi.org/10.1007/s11011-015-9786-6
  64. Redivo DD, Schreiber AK, Adami ER, Ribeiro DE, Joca SR, Zanoveli JM, et al. Effect of omega-3 polyunsaturated fatty acid treatment over mechanical allodynia and depressive-like behavior associated with experimental diabetes. Behav Brain Res. 2016 ; 298(Pt B) : 57-64. https://doi.org/10.1016/j.bbr.2015.10.058
  65. Huang HY, Liao HY, Lin YW. Effects and Mechanisms of Electroacupuncture on Chronic Inflammatory Pain and Depression Comorbidity in Mice. Evid Based Complement Alternat Med. 2020 ; 2020 : 4951591. https://doi.org/10.1155/2020/4951591
  66. Kaufmann D, Brennan KC. The Effects of Chronic Stress on Migraine Relevant Phenotypes in Male Mice. Front Cell Neurosci. 2018 ; 12 : 294. https://doi.org/10.3389/fncel.2018.00294
  67. Wu YY, Jiang YL, He XF, Zhao XY, Shao XM, Du JY, et al. Effects of Electroacupuncture with Dominant Frequency at SP 6 and ST 36 Based on Meridian Theory on Pain-Depression Dyad in Rats. Evid Based Complement Alternat Med. 2015 ; 2015 : 732845. https://doi.org/10.1155/2015/732845
  68. Siemian JN, Shang L, Seaman RW, Jr., Zhu Q, Zhang Y, Li JX. Effects of imidazoline I2 receptor agonists on reserpine-induced hyperalgesia and depressive-like behavior in rats. Behav Pharmacol. 2019 ; 30(5) : 429-34. https://doi.org/10.1097/FBP.0000000000000454
  69. Toma W, Kyte SL, Bagdas D, Alkhlaif Y, Alsharari SD, Lichtman AH, et al. Effects of paclitaxel on the development of neuropathy and affective behaviors in the mouse. Neuropharmacology. 2017 ; 117 : 305-15. https://doi.org/10.1016/j.neuropharm.2017.02.020
  70. Shen Y, Guan S, Ge H, Xiong W, He L, Liu L, et al. Effects of palmatine on rats with comorbidity of diabetic neuropathic pain and depression. Brain Res Bull. 2018 ; 139 : 56-66. https://doi.org/10.1016/j.brainresbull.2018.02.005
  71. Zhang M, Dai W, Liang J, Chen X, Hu Y, Chu B, et al. Effects of UCMS-induced depression on nociceptive behaviors induced by electrical stimulation of the dura mater. Neuroscience Letters. 2013 ; 551 : 1-6. https://doi.org/10.1016/j.neulet.2013.04.038
  72. Burke NN, Hayes E, Calpin P, Kerr DM, Moriarty O, Finn DP, et al. Enhanced nociceptive responding in two rat models of depression is associated with alterations in monoamine levels in discrete brain regions. Neuroscience. 2010 ; 171(4) : 1300-13. https://doi.org/10.1016/j.neuroscience.2010.10.030
  73. Kerckhove N, Boudieu L, Ourties G, Bourdier J, Daulhac L, Eschalier A, et al. Ethosuximide improves chronic pain-induced anxiety- and depression-like behaviors. Eur Neuropsychopharmacol. 2019; 29: 1419-32. https://doi.org/10.1016/j.euroneuro.2019.10.012
  74. Guimaraes MR, Soares AR, Cunha AM, Esteves M, Borges S, Magalhaes R, et al. Evidence for lack of direct causality between pain and affective disturbances in a rat peripheral neuropathy model. Gene Brain Behav. 2019 ; 18(6) : e12542. https://doi.org/10.1111/gbb.12542
  75. Wang S, Tian Y, Song L, Lim G, Tan Y, You Z, et al. Exacerbated mechanical hyperalgesia in rats with genetically predisposed depressive behavior: role of melatonin and NMDA receptors. Pain. 2012 ; 153(12) : 2448-57. https://doi.org/10.1016/j.pain.2012.08.016
  76. Xu Y, Zhang L, Shao T, Ruan L, Wang L, Sun J, et al. Ferulic acid increases pain threshold and ameliorates depression-like behaviors in reserpine-treated mice: behavioral and neurobiological analyses. Metab Brain Dis. 2013 ; 28(4) : 571-83. https://doi.org/10.1007/s11011-013-9404-4
  77. Wu PY, Yang X, Wright DE, Christianson JA. Foot shock stress generates persistent widespread hypersensitivity and anhedonic behavior in an anxiety-prone strain of mice. Pain. 2020 ; 161(1) : 211-9. https://doi.org/10.1097/j.pain.0000000000001703
  78. Boadas-Vaello P, Homs J, Portero-Tresserra M, Alvarez-Perez B, Deulofeu M, Verdu E. Graded photochemical spinal cord injury results in chronic hyperalgesia and depression-like behaviour but no anxiety exacerbation in female BALB/c mice. Neurosci Lett. 2018 ; 664 : 98-106. https://doi.org/10.1016/j.neulet.2017.11.007
  79. Yang L, Liu X, Yao K, Sun Y, Jiang F, Yan H, et al. HCN channel antagonist ZD7288 ameliorates neuropathic pain and associated depression. Brain Res. 2019 ; 1717 : 204-13. https://doi.org/10.1016/j.brainres.2019.03.036
  80. Butkevich IP, Mikhailenko VA, Vershinina EA, Semionov PO, Otellin VA, Aloisi AM. Heterogeneity of the infant stage of rat development: inflammatory pain response, depression-related behavior, and effects of prenatal stress. Brain Res. 2009 ; 1286 : 53-9. https://doi.org/10.1016/j.brainres.2009.06.055
  81. Hisaoka-Nakashima K, Tomimura Y, Yoshii T, Ohata K, Takada N, Zhang FF, et al. High-mobility group box 1-mediated microglial activation induces anxiodepressive-like behaviors in mice with neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry. 2019 ; 92 : 347-62. https://doi.org/10.1016/j.pnpbp.2019.02.005
  82. Sellmeijer J, Mathis V, Hugel S, Li XH, Song Q, Chen QY, et al. Hyperactivity of Anterior Cingulate Cortex Areas 24a/24b Drives Chronic Pain-Induced Anxiodepressive-like Consequences. J Neurosci. 2018 ; 38(12) : 3102-15. http://doi.org/10.1523/jneurosci.3195-17.2018
  83. Parent AJ, Beaudet N, Beaudry H, Bergeron J, Berube P, Drolet G, et al. Increased anxiety-like behaviors in rats experiencing chronic inflammatory pain. Behavioural Brain Research. 2012 ; 229(1) : 160-7. https://doi.org/10.1155/2017/3728752
  84. Martinez-Navarro M, Lara-Mayorga IM, Negrete R, Bilecki W, Wawrzczak-Bargiela A, Goncalves L, et al. Influence of behavioral traits in the inter-individual variability of nociceptive, emotional and cognitive manifestations of neuropathic pain. Neuropharmacology. 2019 ; 148 : 291-304. https://doi.org/10.1016/j.neuropharm.2019.01.012
  85. Hestehave S, Abelson KSP, Bronnum Pedersen T, Finn DP, Andersson DR, Munro G. The influence of rat strain on the development of neuropathic pain and comorbid anxio-depressive behaviour after nerve injury. Sci Rep. 2020 ; 10(1) : 20981. https://doi.org/10.1038/s41598-020-77640-8
  86. Batalle G, Cabarga L, Pol O. The Inhibitory Effects of Slow-Releasing Hydrogen Sulfide Donors in the Mechanical Allodynia, Grip Strength Deficits, and Depressive-Like Behaviors Associated with Chronic Osteoarthritis Pain. Antioxidants (Basel). 2019 ; 9(1) : 31. https://doi.org/10.3390/antiox9010031
  87. Gui WS, Wei X, Mai CL, Murugan M, Wu LJ, Xin WJ, et al. Interleukin-1beta overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain. 2016 ; 12 : 1744806916646784. https://doi.org/10.1177/1744806916646784
  88. Mikhailenko VA, Butkevich IP, Vershinina EA, Semenov PO. Interrelationship between measures of pain reactions in inflammation and levels of depression in prenatally stressed rat pups. Neurosci Behav Physiol. 2010 ; 40(2) : 179-84. https://doi.org/10.1007/s11055-009-9241-4
  89. Fukuhara K, Ishikawa K, Yasuda S, Kishishita Y, Kim HK, Kakeda T, et al. Intracerebroventricular 4-methylcatechol (4-MC) ameliorates chronic pain associated with depression-like behavior via induction of brain-derived neurotrophic factor (BDNF). Cell Mol Neurobiol. 2012 ; 32(6) : 971-7. https://doi.org/10.1007/s10571-011-9782-2
  90. Fischer SPM, Brusco I, Brum ES, Fialho MFP, Camponogara C, Scussel R, et al. Involvement of TRPV1 and the efficacy of alpha-spinasterol on experimental fibromyalgia symptoms in mice. Neurochem Int. 2020 ; 134 : 104673. https://doi.org/10.1016/j.neuint.2020.104673
  91. Gao KX, Zhao Q, Wang GR, Yu L, Wu JY, Zhao X. Isorhynchophyl-line Exerts Antinociceptive Effects on Behavioral Hyperalgesia and Allodynia in a Mouse Model of Neuropathic Pain: Evidence of a 5-HT1A Receptor-Mediated Mechanism. Front Pharmacol. 2020 ; 11 : 318. https://doi.org/10.3389/fphar.2020.00318
  92. Humo M, Ayazgok B, Becker LJ, Waltisperger E, Rantamaki T, Yalcin I. Ketamine induces rapid and sustained antidepressant-like effects in chronic pain induced depression: Role of MAPK signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry. 2020 ; 100 : 109898. https://doi.org/10.1016/j.pnpbp.2020.109898
  93. Yang Y, Song Y, Zhang X, Zhao W, Ma T, Liu Y, et al. Ketamine relieves depression-like behaviors induced by chronic postsurgical pain in rats through anti-inflammatory, anti-oxidant effects and regulating BDNF expression. Psychopharmacology (Berl). 2020 ; 237(6) : 1657-69. https://doi.org/10.1007/s00213-020-05490-3
  94. Sabedra Sousa FS, Birmann PT, Bampi SR, Fronza MG, Balaguez R, Alves D, et al. Lipopolysaccharide-induced depressive-like, anxiogenic-like and hyperalgesic behavior is attenuated by acute administration of alpha-(phenylselanyl) acetophenone in mice. Neuropharmacology. 2019 ; 146 : 128-37. https://doi.org/10.1016/j.neuropharm.2018.11.028
  95. Kamoun N, Gazzo G, Goumon Y, Andry V, Yalcin I, Poisbeau P. Long-lasting analgesic and neuroprotective action of the non-benzodiazepine anxiolytic etifoxine in a mouse model of neuropathic pain. Neuropharmacology. 2021 ; 182 : 108407. https://doi.org/10.1016/j.neuropharm.2020.108407
  96. Zhang X, Kanter K, Chen J, Kim S, Wang Y, Adeyemi C, et al. Low catechol-O-methyltransferase and stress potentiate functional pain and depressive behavior, especially in female mice. Pain. 2020 ; 161(2) : 446-58. https://doi.org/10.1097/j.pain.0000000000001734
  97. Bruning CA, Martini F, Soares SM, Sampaio TB, Gai BM, Duarte MM, et al. m-Trifluoromethyl-diphenyl diselenide, a multitarget selenium compound, prevented mechanical allodynia and depressive-like behavior in a mouse comorbid pain and depression model. Prog Neuropsychopharmacol Biol Psychiatry. 2015 ; 63 : 35-46. https://doi.org/10.1016/j.pnpbp.2015.05.011
  98. Du HX, Chen XG, Zhang L, Liu Y, Zhan CS, Chen J, et al. Microglial activation and neurobiological alterations in experimental autoimmune prostatitis-induced depressive-like behavior in mice. Neuropsychiatr Dis Treat. 2019 ; 15 : 2231-45. https://doi.org/10.2147/NDT.S211288
  99. Amorim D, Puga S, Braganca R, Braga A, Pertovaara A, Almeida A, et al. Minocycline reduces mechanical allodynia and depressive-like behaviour in type-1 diabetes mellitus in the rat. Behav Brain Res. 2017 ; 327 : 1-10. https://doi.org/10.1016/j.bbr.2017.03.003
  100. Dai J, Ding Z, Zhang J, Xu W, Guo Q, Zou W, et al. Minocycline Relieves Depressive-Like Behaviors in Rats With Bone Cancer Pain by Inhibiting Microglia Activation in Hippocampus. Anesth Analg. 2019 ; 129(6) : 1733-41. https://doi.org/10.1213/ANE.0000000000004063
  101. Martinez-Navarro M, Cabanero D, Wawrzczak-Bargiela A, Robe A, Gaveriaux-Ruff C, Kieffer BL, et al. Mu and delta opioid receptors play opposite nociceptive and behavioural roles on nerve-injured mice. Br J Pharmacol. 2020 ; 177(5) : 1187-205. https://doi.org/10.1111/bph.14911
  102. Zuena AR, Maftei D, Alema GS, Dal Moro F, Lattanzi R, Casolini P, et al. Multimodal antidepressant vortioxetine causes analgesia in a mouse model of chronic neuropathic pain. Mol Pain. 2018 ; 14 : 1744806918808987. https://doi.org/10.1177/1744806918808987
  103. Tyrtyshnaia A, Manzhulo I. Neuropathic Pain Causes Memory Deficits and Dendrite Tree Morphology Changes in Mouse Hippocampus. J Pain Res. 2020 ; 13 : 345-54. https://doi.org/10.2147/JPR.S238458
  104. Chen JL, Zhou X, Liu BL, Wei XH, Ding HL, Lin ZJ, et al. Normalization of magnesium deficiency attenuated mechanical allodynia, depressive-like behaviors, and memory deficits associated with cyclophosphamide-induced cystitis by inhibiting TNF-alpha/NF-kappaB signaling in female rats. J Neuroinflammation. 2020 ; 17(1) : 99. https://doi.org/10.1186/s12974-020-01786-5
  105. Hu X, Dong Y, Jin X, Zhang C, Zhang T, Zhao J, et al. The novel and potent anti-depressive action of triptolide and its influences on hippocampal neuroinflammation in a rat model of depression comorbidity of chronic pain. Brain Behav Immun. 2017 ; 64 : 180-94. https://doi.org/10.1016/j.bbi.2017.03.005
  106. Birmann PT, Casaril AM, Hartwig D, Jacob RG, Seixas FK, Collares T, et al. A novel pyrazole-containing selenium compound modulates the oxidative and nitrergic pathways to reverse the depression-pain syndrome in mice. Brain Res. 2020 ; 1741 : 146880. https://doi.org/10.1016/j.brainres.2020.146880
  107. Bravo L, Torres-Sanchez S, Alba-Delgado C, Mico JA, Berrocoso E. Pain exacerbates chronic mild stress-induced changes in noradrenergic transmission in rats. Eur Neuropsychopharmacol. 2014 ; 24(6) : 996-1003. https://doi.org/10.1016/j.euroneuro.2014.01.011
  108. Wang W, Li C, Cai Y, Pan ZZ. Pain vulnerability and DNA methyltransferase 3a involved in the affective dimension of chronic pain. Mol Pain. 2017 ; 13 : 1744806917726713. https://doi.org/10.1177/1744806917726713
  109. Oliveira CES, Marcondes Sari MHM, Zborowski VA, Prado VC, Nogueira CW, Zeni G. Pain-depression dyad induced by reserpine is relieved by p,p'-methoxyl-diphenyl diselenide in rats. Eur J Pharmacol. 2016 ; 791 : 794-802. https://doi.org/10.1016/j.ejphar.2016.10.021
  110. Zhou W, Dantzer R, Budac DP, Walker AK, Mao-Ying QL, Lee AW, et al. Peripheral indoleamine 2,3-dioxygenase 1 is required for comorbid depression-like behavior but does not contribute to neuropathic pain in mice. Brain Behav Immun. 2015 ; 46 : 147-53. https://doi.org/10.1016/j.bbi.2015.01.013
  111. Fiore NT, Austin PJ. Peripheral Nerve Injury Triggers Neuroinflammation in the Medial Prefrontal Cortex and Ventral Hippocampus in a Subgroup of Rats with Coincident Affective Behavioural Changes. Neuroscience. 2019 ; 416 : 147-67. https://doi.org/10.1016/j.neuroscience.2019.08.005
  112. Filho P, Chaves Filho AJM, Vieira CFX, Oliveira TQ, Soares MVR, Juca PM, et al. Peritoneal endometriosis induces time-related depressive- and anxiety-like alterations in female rats: involvement of hippocampal pro-oxidative and BDNF alterations. Metab Brain Dis. 2019 ; 34(3) : 909-25. https://doi.org/10.1007/s11011-019-00397-1
  113. Zhao J, Luo D, Liang Z, Lao L, Rong J. Plant Natural Product Puerarin Ameliorates Depressive Behaviors and Chronic Pain in Mice with Spared Nerve Injury (SNI). Mol Neurobiol. 2017 ; 54(4) : 2801-12. https://doi.org/10.1007/s12035- 016-9870-x
  114. Arora V, Chopra K. Possible involvement of oxido-nitrosative stress induced neuro-inflammatory cascade and monoaminergic pathway: underpinning the correlation between nociceptive and depressive behaviour in a rodent model. J Affective Disord. 2013 ; 151(3) : 1041-52. https://doi.org/10.1016/j.jad.2013.08.032
  115. Asaoka Y, Kato T, Ide S, Amano T, Minami M. Pregabalin induces conditioned place preference in the rat during the early, but not late, stage of neuropathic pain. Neurosci Lett. 2018 ; 668 : 133-7. https://doi.org/10.1016/j.neulet.2018.01.029
  116. Yu C, Zhang Y, Gao KX, Sun HT, Gong MZ, Zhao X, et al. Serotonergically dependent antihyperalgesic and antiallodynic effects of isoliquiritin in a mouse model of neuropathic pain. Eur J Pharmacol. 2020 ; 881 : 173184. https://doi.org/10.1016/j.ejphar.2020.173184
  117. Zhou C, Wu Y, Ding X, Shi N, Cai Y, Pan ZZ. SIRT1 Decreases Emotional Pain Vulnerability with Associated CaMKIIalpha Deacetylation in Central Amygdala. J Neurosci. 2020 ; 40(11) : 2332-42. https://doi.org/10.1523/JNEUROSCI.1259-19.2020
  118. Singh L, Kaur A, Garg S, Bhatti R. Skimmetin/osthole mitigates pain-depression dyad via inhibiting inflammatory and oxidative stress-mediated neurotransmitter dysregulation. Metab Brain Dis. 2021 ; 36(1) : 111-21. https://doi.org/10.1007/s11011-020-00604-4
  119. Piardi LN, Pagliusi M, Bonet I, Brandao AF, Magalhaes SF, Zanelatto FB, et al. Social stress as a trigger for depressive-like behavior and persistent hyperalgesia in mice: study of the comorbidity between depression and chronic pain. J Affect Disord. 2020 ; 274 : 759-67. https://doi.org/10.1016/j.jad.2020.05.144
  120. Norman GJ, Karelina K, Zhang N, Walton JC, Morris JS, Devries AC. Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury. Mol Psychiatry. 2010 ; 15(4) : 404-14. https://doi.org/10.1038/mp.2009.91
  121. Ferreira-Chamorro P, Redondo A, Riego G, Leanez S, Pol O. Sulforaphane Inhibited the Nociceptive Responses, Anxietyand Depressive-Like Behaviors Associated With Neuropathic Pain and Improved the Anti-allodynic Effects of Morphine in Mice. Front Pharmacol. 2018 ; 9 : 1332. https://doi.org/10.3389/fphar.2018.01332
  122. Christoph T, Raffa R, De Vry J, Schroder W. Synergistic interaction between the agonism of cebranopadol at nociceptin/ orphanin FQ and classical opioid receptors in the rat spinal nerve ligation model. Pharmacol Res Perspect. 2018 ; 6(6) : e00444. https://doi.org/10.1002/prp2.444
  123. Poupon L, Lamoine S, Pereira V, Barriere DA, Lolignier S, Giraudet F, et al. Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology. 2018 ; 140 : 43-61. https://doi.org/10.1016/j.neuropharm.2018.07.026
  124. Shang L, Xu TL, Li F, Su J, Li WG. Temporal dynamics of anxiety phenotypes in a dental pulp injury model. Mol Pain. 2015 ; 11 : 40. https://doi.org/10.1186/s12990-015-0040-3
  125. Pagliusi M, Jr., Bonet IJM, Brandao AF, Magalhaes SF, Tambeli CH, Parada CA, et al. Therapeutic and Preventive Effect of Voluntary Running Wheel Exercise on Social Defeat Stress (SDS)-induced Depressive-like Behavior and Chronic Pain in Mice. Neuroscience. 2020 ; 428 : 165-77. https://doi.org/10.1016/j.neuroscience.2019.12.037
  126. Gregoire S, Millecamps M, Naso L, Do Carmo S, Cuello AC, Szyf M, et al. Therapeutic benefits of the methyl donor S-adenosylmethionine on nerve injury-induced mechanical hypersensitivity and cognitive impairment in mice. Pain. 2017 ; 158(5) : 802-10. https://doi.org/10.1097/j.pain.0000000000000811
  127. Lomazzo E, Bindila L, Remmers F, Lerner R, Schwitter C, Hoheisel U, et al. Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain. Neuropsychopharmacology. 2015 ; 40(2) : 488-501. https://doi.org/10.1038/npp.2014.198
  128. Caspani O, Reitz MC, Ceci A, Kremer A, Treede RD. Tramadol reduces anxiety-related and depression-associated behaviors presumably induced by pain in the chronic constriction injury model of neuropathic pain in rats. Pharmacol Biochem Behav. 2014 ; 124 : 290-6. https://doi.org/10.1016/j.pbb.2014.06.018
  129. Xu Y, Cui SY, Ma Q, Shi J, Yu Y, Li JX, et al. trans-Resveratrol Ameliorates Stress-Induced Irritable Bowel Syndrome-Like Behaviors by Regulation of Brain-Gut Axis. Front Pharmacol. 2018 ; 9 : 631. https://doi.org/10.3389/fphar.2018.00631
  130. Lin YW, Chou AIW, Su H, Su KP. Transient receptor potential V1 (TRPV1) modulates the therapeutic effects for comorbidity of pain and depression: The common molecular implication for electroacupuncture and omega-3 polyunsaturated fatty acids. Brain Behav Immun. 2020 ; 89 : 604-14. https://doi.org/10.1016/j.bbi.2020.06.033
  131. Cabarga L, Batalle G, Pol O. Treatment with slow-releasing hydrogen sulfide donors inhibits the nociceptive and depressive-like behaviours accompanying chronic neuropathic pain: Endogenous antioxidant system activation. J Psychopharmacol. 2020 ; 34(7) : 737-49. https://doi.org/10.1177/0269881120913154
  132. Laumet G, Zhou W, Dantzer R, Edralin JD, Huo X, Budac DP, et al. Upregulation of neuronal kynurenine 3-monooxygenase mediates depression-like behavior in a mouse model of neuropathic pain. Brain Behav Immun. 2017 ; 66 : 94-102. https://doi.org/10.1016/j.bbi.2017.07.008
  133. Chung G, Kim CY, Yun Y-C, Yoon SH, Kim M-H, Kim YK, et al. Upregulation of prefrontal metabotropic glutamate receptor 5 mediates neuropathic pain and negative mood symptoms after spinal nerve injury in rats (vol 8, 2744, 2017). Sci Rep. 2017 ; 7(1) : 8. https://doi.org/10.1038/s41598-017-09991-8
  134. Medeiros P, de Freitas RL, Boccella S, Iannotta M, Belardo C, Mazzitelli M, et al. Characterization of the sensory, affective, cognitive, biochemical, and neuronal alterations in a modified chronic constriction injury model of neuropathic pain in mice. J Neurosci Res. 2020 ; 98(2) : 338-52. https://doi.org/10.1002/jnr.24501
  135. Fellah F, Djenidi R, Bellik Y, Dehbi-Zebboudj A. Spharococcus coronopifolius alleviates oxidative brain injury associated to depression-related behavior infemale wistar rats. International Journal of Pharmaceutical Sciences and Research. 2020 ; 11 : 7. https://doi.org/10.13040/ijpsr.0975-8232.11(2).693-99
  136. Kim H, Chen L, Lim G, Sung B, Wang S, McCabe MF, et al. Brain indoleamine 2, 3-dioxygenase contributes to the comorbidity of pain and depression. J Clin Invest. 2012 ; 122(8) :2940-54. https://doi.org/10.1172/JCI61884
  137. Mahesh R, Viyogi S, Pandey DK, Yadav S. Evaluation of anti-depressant and analgesic- like activity of ondansetron in rodents model of co-morbid pain and depression. Indian J Pharm Educ Res. 2010 ; 44(2) : 160-70.
  138. Poupon L, Lamoine S, Pereira V, Barriere DA, Lolignier S, Giraudet F, et al. Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology. 2018 ; 140 : 43-61. https://doi.org/10.1016/j.neuropharm.2018.07.026
  139. Radat F, Margot-Duclot A, Attal N. Psychiatric co-morbidities in patients with chronic peripheral neuropathic pain: A multicentre cohort study. Eur J Pain. 2013 ; 17(10) : 1547-57. https://doi.org/10.1002/j.1532-2149.2013.00334.x
  140. Lindsay PG, Wyckoff M. The depression-pain syndrome and its response to antidepressants. Psychosomatics. 1981 ; 22(7) : 571-7. https://doi.org/10.1016/S0033-3182(81)73478-9
  141. Breivik H, Borchgrevink P, Allen S, Rosseland L, Romundstad L, Breivik Hals E, et al. Assessment of pain. Br J Anaesth. 2008 ; 101(1) : 17-24. https://doi.org/10.1093/bja/aen103
  142. Barrot M. Tests and models of nociception and pain in rodents. Neuroscience. 2012 ; 211 : 39-50. https://doi.org/10.1016/j.neuroscience.2011.12.041
  143. Siemian J, LaMacchia Z, Spreuer V, Tian J, Ignatowski T, Paez P, Zhang Y, et al. The imidazoline I2 receptor against 2-BFI attenuates hypersensitivity and spinal neuroinflammation in a rat model of neuropathic pain. Bichem Pharmacol. 2018 ; 153 : 260-8. https://doi.org/10.1016/j.bcp.2018.01.032
  144. Wong M L, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci. 2001 ; 2(5) : 343-51. https://doi.org/10.1038/35072566
  145. Campbell L C, Clauw D J, Keefe F J. Persistent pain and depression: a biopsychosocial perspective. Biol Psychiatry. 2003 ; 54(3) : 399-409. https://doi.org/10.1016/s0006-3223(03)00545-6
  146. Birrer R B, Vemuri S P. Depression in later life: a diagnostic and therapeutic challenge. Am Fam Physician. 2004 ; 69(10) : 2375-82.
  147. Zhang R, Lao L, Ren K, Berman B M. Machanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology. 2014 ; 120(2) ; 482-503. https://doi.org/10.1097/ALN.0000000000000101
  148. Park JY, Cho Sj, Lee SH, Ryu Y, Jang JH, Kim SN, Park HJ. Peripheral ERK modulates acupuncture-induced brain neural activity and its functional connectivity. Sci Rep. 2021 ; 11(1) : 5128. https://doi.org/10.1038/s41598-021-84273-y
  149. Park JY, Lee IS, Cheon S. Central and peripheral mechanism of acupuncture analgesia on visceral pain: a systematic review. Evid Based Complement Alternat Med. 2019 : 2019 : 1304152. https://doi.org/10.1155/2019/1304152
  150. Park JY, Park JB, Jeon SH, Doo AR, Kim SN, Lee HS, et al. From peripheral to central: the role of ERK signaling pathway in acupuncture analgesia. J Pain. 2014 ; 15(5) : 535-49. https://doi.org/10.1016/j.jpain.2014.01.498
  151. Jung JY, Lee SM, Lee MJ, Ryu JS, Song JH, Lee JE, et al. Lipidomics reveals that acupuncture modulates the lipid metabolism and inflammatory interaction in a mouse model of depression. Brain Behav Immun. 2021 ; 94 : 424-36. https://doi.org/10.1016/j.bbi.2021.02.003
  152. Lee MJ, Ryu JS, Won SK, Nangung U, Jung JY, Lee SM, et al. Effects of acupuncture on chronic stress-induced depression-like behavior and its central neural mechanism. Front Psychol. 2019 ; 10 : 1353. https://doi.org/10.3389/fpsyg.2019.01353