• 제목/요약/키워드: Oxidative species

검색결과 1,320건 처리시간 0.022초

Protective Effects of Phenolic-rich Fraction(PRF) from Fructus Schisandrae on $H_2O_2-induced$ Apoptosis of SH-SY5Y Cells

  • Son, In-Hwan;Lee, Key-Sang
    • 대한한방내과학회지
    • /
    • 제28권2호
    • /
    • pp.230-241
    • /
    • 2007
  • Objective : This study was intended to ascertain the protective effect of phenolic-rich fraction (PRF) from Fructus Schisandrae on SH-SY5Y cells. Methods : PRF was obtained from the 80% ethanol extract of Fructus Schisandrae by Sepabeads SP-850 column chromatography. The neuroprotective effect of the FS PRS was investigated due to the hydrogen peroxide $(H_2O_2)-induced$ apoptosis of cultured SH-SY5Y cells. Results : Cell viability assays revealed that pretreating SH-SY5Y cells with PRF (10-200 ${\mu}g/mL$) resulted in significant dose-dependent protection against $H_2O_2-induced$ cell death. The effect was assessed by flow cytometric analysis of DNA contents using propidium iodide (PI) staining. The population of apoptotic cells was increased by 32.89% in only $H_2O_2$ (150 ${\mu}M$)-treated environment, but it was reduced by pre-treatment of FS PRF (200 ${\mu}g/mL$) to 21.61%. $H_2O_2-induced$ caspase-3 activation and PARP cleavage were reduced in FS PRF pre-treated cells, and PRF led to an apparent suppressive effect on the oxidative stress induced by reactive oxygen species (ROS). Conculsion : This study showed that Fructus Schisandrae should be useful for the treatment prevention of neurodegenerative diseases associated with elevated ROS levels.

  • PDF

Role of Glutathione Redox System on the T-2 Toxin Tolerance of Pheasant (Phasianus colchicus)

  • Fernye, Csaba;Ancsin, Zsolt;Bocsai, Andrea;Balogh, Krisztian;Mezes, Miklos;Erdelyi, Marta
    • Toxicological Research
    • /
    • 제34권3호
    • /
    • pp.249-257
    • /
    • 2018
  • The purpose of the present study was to evaluate the effects of different dietary concentrations of T-2 toxin on blood plasma protein content, lipid peroxidation and glutathione redox system of pheasant (Phasianus colchicus). A total of 320 one-day-old female pheasants were randomly assigned to four treatment groups fed with a diet contaminated with different concentrations of T-2 toxin (control, 4 mg/kg, 8 mg/kg and 16 mg/kg). Birds were sacrificed at early (12, 24 and 72 hr) and late (1, 2 and 3 weeks) stages of the experiment to demonstrate the effect of T-2 toxin on lipid peroxidation and glutathione redox status in different tissues. Feed refusal and impaired growth were observed with dose dependent manner. Lipid-peroxidation was not induced in the liver, while the glutathione redox system was activated partly in the liver, but primarily in the blood plasma. Glutathione peroxidase activity has changed parallel with reduced glutathione concentration in all tissues. Based on our results, pheasants seem to have higher tolerance to T-2 toxin than other avian species, and glutathione redox system might contribute in some extent to this higher tolerance, in particular against free-radical mediated oxidative damage of tissues, such as liver.

곤달비의 수명 연장 효과 (Lifespan Extending Effects of Ligularia stenocephala)

  • 김상현;임준상;김봉석;임현주;오종우;박진석;윤영진;이하나;차동석;전훈
    • 생약학회지
    • /
    • 제46권1호
    • /
    • pp.38-43
    • /
    • 2015
  • Ligularia stenocephala has a wide range of types of constituents with various pharmacological properties. Here in this study, we examined the effect of methanolic extract of L. stenocephala (MLS) on the lifespan and stress tolerance using Caenorhabditis elegans model system. We found that lifespan of wild-type worms was significantly lengthened in the presence of MLS in a dose dependent manner. MLS also elevated the tolerance of worms against osmotic, heat shock, and oxidative stress. We also demonstrated in vivo antioxidant capacity of MLS by checking intracellular reactive oxygen species levels as well as antioxidant enzyme activities such as catalase and superoxide dismutase. We further investigated several aging-related factors, including pharyngeal pumping rate and body length. Here, we showed that MLS exerts longevity effect independent of both factors. In addition, body movement of aged worms was significantly elevated, suggesting MLS could enhance healthspan as well as lifespan.

Cytoprotective Effects of Sulfuretin from Rhus verniciflua through Regulating of Heme Oxygenase-1 in Human Dental Pulp Cells

  • Lee, Dong-Sung;Kim, Kyoung-Su;Ko, Wonmin;Keo, Samell;Jeong, Gil-Saeng;Oh, Hyuncheol;Kim, Youn-Chul
    • Natural Product Sciences
    • /
    • 제19권1호
    • /
    • pp.54-60
    • /
    • 2013
  • Rhus verniciflua Stokes (Anacadiaceae) is a plant that is native to East Asian countries, such as Korea, China, and Japan, and it has been found to exert various biological activities including antioxidative, anti-aggregatory, anti-inflammatory, anti-mutagenic, and apoptotic effects. Sulfuretin is one of the major flavonoid component isolated from the heartwood of R. verniciflua. Reactive oxygen species (ROS), produced via dental adhesive bleaching agents and pulpal disease, can cause oxidative stress. In the present study, we isolated sulfuretin from R. verniciflua and demonstrated that sulfuretin possesses cytoprotective effects against hydrogen peroxide ($H_2O_2$)-induced dental cell death. $H_2O_2$ is a representative ROS and causes cell death through necrosis in human dental pulp (HDP) cells. $H_2O_2$-induced cytotoxicity and production of ROS were blocked in the presence of sulfuretin, and these effects were dose dependent. Sulfuretin also increased heme oxygenase-1 (HO-1) protein expression. In addition, to determine whether sulfuretin-induced HO-1 expression mediated this cytoprotective effect, HDP cells were cotreated with sulfuretin in the absence or presence of SnPP, an inhibitor of HO activity. Sulfuretin-dependent HO-1 expression was required for suppression of $H_2O_2$-induced HDP cell death and ROS generation. These results indicate that sulfuretin-dependent HO-1 expression was required for the inhibition of $H_2O_2$-induced cell death and ROS generation. In addition, sulfuretin may be used to prevent functional dental cell death and thus may be useful as a pulpal disease agent.

Menadione에 의해 유발된 간독성에 미치는 홍삼사포닌의 영향 (Effects of red ginseng total saponin on Menadione-induced hepatotoxicity in the rat)

  • 장봉준;배춘식;조용성;차용호;박창원;조대현;장경진
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.619-627
    • /
    • 1997
  • It is known that 2-methyl-1,4-naphtoquinone(menadione, MD) induces hepatotoxicities both in vivo and in vitro. These toxic effects are believed to result from oxidative damages to hepatocytes by "active oxygen" species via one-electron reduction of the naphtoquinone. The ginsenoside(GS) is a complex mixture of individual ginsenosides which is known to produce a range of effects on the cardiovascular and central nervous systems. In particular, GS has an antioxidant effect. In this experiment we studied the effect of GS from red panax ginseng(red ginseng total saponin, RGTS) on free radical-induced liver injuries by MD. Administration of MD($150{\mu}M$) caused an increase in aspartate aminotransferase(AST) activities and lipid peroxidation, decrease in alkaline phosphatase(ALP) activities and total bilirubin levels in blood, caused depletion of GSH and changes of antioxidant enzyme(superoxide dismutase, catalase) activities are shown in liver tissue. Administration of RGTS restored the AST levels that increased by MD, but catalase showed no significant changes. RGTS also had an effect of restoring the GSH level and had some synergistic effects with SOD. These data suggest that RGTS may have some protective effects on liver injury which is related with the oxygen free radical.

  • PDF

Quercetin, A Bioflavonoid, Protects Against Oxidative Stress-related Gastric Mucosal Damage in Rats

  • Rao, Ch.V.;Ojha, S.K.;Govindarajan, R.;Rawat, A.K.S.;Mehrotra, S.;Pushpangadan, P.
    • Natural Product Sciences
    • /
    • 제9권2호
    • /
    • pp.68-72
    • /
    • 2003
  • Quercetin and its sugar conjugates are the most abundantly distributed bioflavonoids and represent the largest proportion of flavonols in the plant kingdom. The present study was undertaken to demonstrate the effect of quercetin on the role of reactive oxygen species (ROS) in the development of gastric ulcers in rats. Administration of quercetin in doses of 50, 100 and $200\;mg\;kg^{-1}$ twice daily for 5 days, showed dose dependent significant protection against ethanol (EtOH), aspirin (ASP), cold-restraint stress (CRS) and pylorus ligation (PL) -induced gastric ulcer models and the results were comparable with those elicited by sucralfate. The thiobarbituric acid reactive substances in the stomach mucosa, an index of lipid peroxidation and regulation of plasma corticosterone were significantly increased in CRS-induced gastric ulceration. The queroetin $(100\;mg\;kg^{-1})$ and reduced glutathione effectively inhibited gastric lesions induced by CRS with a significant decrease in the lipid peroxidation and plasma corticosterone. These results indicate that quercetin a bioflavonoid exerts its antiulcer effect in light of free radical scavenging and plasma corticosterone in cold restraint stress ulcers.

Peroxynitrite scavengers from Phellinus linteus

  • Jeong, Da-Mi;Jung, Hyun-Ah;Kang, Hye-Sook;Choi, Jae-Sue
    • Natural Product Sciences
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2008
  • Peroxynitrite ($(ONOO^-)$ is a cytotoxic species formed from nitric oxide and superoxide anion, which are highly implicated in the pathogenesis of oxidative stress-mediated diseases. The aim of this study was to investigate the scavenging effects of Phellinus linteus on authentic $ONOO^-$, and further phytochemical studies are planned that will attempt to identify the active principles. From the active EtOAc fraction, a mixture of fungisterol and 5-dihydroergosterol (1), a mixture of betulin and 1,2-benzenedicarboxylic acid bis (2-methyl heptyl) ester (2), protocatechualdehyde (3), protocatechuic acid (4), cirsiumaldehyde (5), hispidin (6), caffeic acid (7), phelligridin D (8), uracil (9), gallic acid (10), 2,5-dihydroxybenzoic acid (11), ferulic acid (12), 2,3-dihydroxybenzaldehyde (13), arbutin (14), isoferulic acid (15), guanosine (16), and ellagic acid (17) were isolated, and their structures were characterized based on spectroscopic data. All compounds except 3, 6, 7 and 16 were isolated for the first time from P. linteus. Compounds 3, 4, 6-8, 10-15, and 17 showed potent scavenging activity on $ONOO^-$, with $IC_{50}$ values of $2.06\;{\pm}\;0.10$, $3.45\;{\pm}\;0.57$, $0.71\;{\pm}\;0.05$, $2.78\;{\pm}\;0.36$, $5.42\;{\pm}\;0.26$, $1.13\;{\pm}\;0.02$, $1.82\;{\pm}\;0.17$, $0.91\;{\pm}\;0.19$, $1.59\;{\pm}\;0.09$, $1.88\;{\pm}\;0.07$, $1.22\;{\pm}\;0.37$, and $2.01\;{\pm}\;0.02\;{\mu}M$, respectively, as compared to the positive control, DL-penicillamine, with an $IC_{50}$ value of $5.04\;{\pm}\;0.06\;{\mu}M$.

니파야자(Nypa fruticans Wurmb) 싹 추출물 및 분획물의 항산화, 세포 보호 및 항균 효과에 관한 평가 (Evaluation of Antioxidant, Cytoprotective and Antimicrobial Activities of the Extract and Fractions Obtained from Young Shoots of Nypa Fruticans Wurmb)

  • 신혁수;이윤주;김지웅;송바름;이상래;박수남
    • 생약학회지
    • /
    • 제49권2호
    • /
    • pp.155-164
    • /
    • 2018
  • Nypa fruticans Wurmb is a species of palm, which is widely distributed in the mangrove forest of Southeast Asia. Various parts of N. fruticans has been used as a traditional medicinal plant. However, the physiological activities of N. fruticans has not yet been clarified well. Therefore, in this study, the 50% ethanol extract and its aqueous and ethyl acetate fractions of young shoots of N. fruticans were investigated for their antioxidant, cytoprotective effect, and antimicrobial activities. Every sample possessed very high free radical and various ROS scavenging capacities assessed by employing different in vitro assays such as $DPPH^{\cdot}$, $O_2^{{\cdot}-}$, ${\cdot}OH$, and $^1O_2$ scavenging activities. Based on these results, the cytoprotective effect was investigated using the oxidative hemolysis of erythrocyte. We found that the extract and fractions provide a greater protective effect compared with (+)-${\alpha}$-tocopherol. Furthermore, antimicrobial activities were confirmed against skin pathogens by broth microdilution assay. The ethyl acetate fraction had much higher antimicrobial activities than methyl paraben against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans. Taken together, our results indicated that the young shoots of N. fruticans may have the potential role as a natural active ingredient through their antioxidant, cytoprotective effect, and antimicrobial activities.

Hopea chinensis (Merr.) Hand.-Mazz. 메탄올 추출물이 신경세포에서 아밀로이드 전구 단백질 대사에 미치는 영향 (The Effects of MeOH Extract of Hopea chinensis (Merr.) Hand.-Mazz. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells)

  • 쉬레스타 아비나쉬 찬드라;김주은;함하늘;조윤정;트란 더 바이트;엄상미;임재윤
    • 생약학회지
    • /
    • 제49권2호
    • /
    • pp.182-187
    • /
    • 2018
  • Many plant derived phytochemicals have been considered as the main therapeutic strategy against Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder, and the most predominant cause of dementia in the elderly. Cholinergic deficit, senile plaque/${\beta}$-amyloid ($A{\beta}$) peptide deposition and oxidative stress have been identified as three main pathogenic pathways which contribute to the progression of AD. We screened many different plant species for their effective use in both modern and traditional system of medicines. In this study, we tested that MeOH extract of the stem bark of Hopea chinensis (Merr.) Hand.-Mazz. (HCM) affects on the processing of Amyloid precursor portein (APP) from the APPswe over-expressing Neuro2a cell line. We showed that HCM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ in a dose dependent manner. We found that HCM increased over 1.5 folds of the secretion level of $sAPP{\alpha}$, a metabolite of ${\alpha}$-secretase. Furthermore, we found that HCM inhibited acetylcholinesterase activity in vitro. We suggest that the stem bark of Hopea chinensis may be a useful source to develop a therapeutics for AD.

Recent Findings on the Mechanism of Cisplatin-Induced Renal Cytotoxicity and Therapeutic Potential of Natural Compounds

  • Lee, Dahae;Choi, Sungyoul;Yamabe, Noriko;Kim, Ki Hyun;Kang, Ki Sung
    • Natural Product Sciences
    • /
    • 제26권1호
    • /
    • pp.28-49
    • /
    • 2020
  • The efficacy and side effects associated with anticancer drugs have attracted an extensive research focus. Onconephrology is an evolving field of nephrology that deals with the study of kidney diseases in cancer patients. Most renal diseases in cancer patients are unique, and management of renal disease can be challenging especially in the presence of continuing use of the nephrotoxic drugs. Cisplatin is one of the most important chemotherapeutic agents used in the treatment of various malignancies, such as head, neck, ovarian, and cervical cancers. The major limitation in the clinical use of cisplatin is its tendency to induce adverse effects, such as nephrotoxicity. Recently, plant-derived phytochemicals have emerged as novel agents providing protection against cisplatin-induced renal cytotoxicity. Owing to the diversity of phytochemicals, they cover a wide spectrum of therapeutic indications in cancer and inflammation and have been a productive source of lead compounds for the development of novel medications. Of these agents, the effectiveness of triterpenoids, isolated from various medicinal plants, against cisplatin-induced renal cytotoxicity has been reported most frequently compared to other phytochemicals. Triterpenes are one of the most numerous and diverse groups of plant natural products. Triterpenes ameliorate cisplatin-induced renal damage through multiple pathways by inhibiting reactive oxygen species, inflammation, down-regulation of the MAPK, apoptosis, and NF-κB signaling pathways and upregulation of Nrf2-mediated antioxidant defense mechanisms. Here, we reviewed recent findings on the natural compounds with protective potential in cisplatin-induced renal cytotoxicity, provided an overview of the protective effects and mechanisms that have been identified to date, and discussed strategies to reduce renal cytotoxicity induced by anticancer drugs.