Peroxynitrite scavengers from Phellinus linteus

  • Jeong, Da-Mi (Division of Food Science and Biotechnology, Pukyong National University) ;
  • Jung, Hyun-Ah (Division of Food Science and Biotechnology, Pukyong National University) ;
  • Kang, Hye-Sook (Division of Food Science and Biotechnology, Pukyong National University) ;
  • Choi, Jae-Sue (Division of Food Science and Biotechnology, Pukyong National University)
  • Published : 2008.03.31

Abstract

Peroxynitrite ($(ONOO^-)$ is a cytotoxic species formed from nitric oxide and superoxide anion, which are highly implicated in the pathogenesis of oxidative stress-mediated diseases. The aim of this study was to investigate the scavenging effects of Phellinus linteus on authentic $ONOO^-$, and further phytochemical studies are planned that will attempt to identify the active principles. From the active EtOAc fraction, a mixture of fungisterol and 5-dihydroergosterol (1), a mixture of betulin and 1,2-benzenedicarboxylic acid bis (2-methyl heptyl) ester (2), protocatechualdehyde (3), protocatechuic acid (4), cirsiumaldehyde (5), hispidin (6), caffeic acid (7), phelligridin D (8), uracil (9), gallic acid (10), 2,5-dihydroxybenzoic acid (11), ferulic acid (12), 2,3-dihydroxybenzaldehyde (13), arbutin (14), isoferulic acid (15), guanosine (16), and ellagic acid (17) were isolated, and their structures were characterized based on spectroscopic data. All compounds except 3, 6, 7 and 16 were isolated for the first time from P. linteus. Compounds 3, 4, 6-8, 10-15, and 17 showed potent scavenging activity on $ONOO^-$, with $IC_{50}$ values of $2.06\;{\pm}\;0.10$, $3.45\;{\pm}\;0.57$, $0.71\;{\pm}\;0.05$, $2.78\;{\pm}\;0.36$, $5.42\;{\pm}\;0.26$, $1.13\;{\pm}\;0.02$, $1.82\;{\pm}\;0.17$, $0.91\;{\pm}\;0.19$, $1.59\;{\pm}\;0.09$, $1.88\;{\pm}\;0.07$, $1.22\;{\pm}\;0.37$, and $2.01\;{\pm}\;0.02\;{\mu}M$, respectively, as compared to the positive control, DL-penicillamine, with an $IC_{50}$ value of $5.04\;{\pm}\;0.06\;{\mu}M$.

Keywords

References

  1. Aoki, T., Takagi, K., Hirata, T., and Suga, T., Two naturally ocuuurring acyclic diterpene and norditerpene aldhydes from Tetragonia tetragonoides. Phytochemistry 21, 1361-1363 (1982) https://doi.org/10.1016/0031-9422(82)80142-8
  2. Aruoma, O.I., Spencer, J.P., and Mahmood, N., Protection against oxidative damage and cell death by the natural antioxidant ergothioneine. Food Chem. Toxicol. 37, 1043-1053 (1999) https://doi.org/10.1016/S0278-6915(99)00098-8
  3. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., and Freeman, B.A., Apparent hydroxyl radical production by peroxynitrite: Implication for endothelial injury from nitric oxide and superoxide. Proc. Nat. Acad. Sci. 87, 1620-1624 (1990)
  4. Boersma, B.J., Patel, R.P., Kirk, M., Jackson, P.L., Muccio, D., Darley- Usmar, V.M., and Barnes, S., Chlorination and nitration of soy isoflavones. Arch. Biochem. Biophys. 368, 265-275 (1999) https://doi.org/10.1006/abbi.1999.1330
  5. Cha, B.C., Lee, H.W., and Rhim, T.J., Antioxidnat constituents and activities of acorn hull and chestnut hull. Yakhak Hoeji 47, 212-217 (2003)
  6. Cho, J.H., Cho, S.D., Hu, H., Kim, S.H., Lee, S.K., Lee, Y.S., and Kang, K.S., The roles of ERK 1/2 and p38 MAP kinases in the preventive mechanisms of mushroom Phellinus linteus against the inhibition of gap junctional intercellular communication by hydrogen peroxide. Carcinogenesis 23, 1163-1169 (2002) https://doi.org/10.1093/carcin/23.7.1163
  7. Choi, C.W., Jung, H.A., Kang, S.S., and Choi, J.S., Antioxidant constituents and a new triterpenoid glycoside from Flos lonicerae. Arch. Pharm. Res. 30, 1-7 (2007) https://doi.org/10.1007/BF02977770
  8. Darley-Usmar, V., Wiseman, H., and Halliwell, B., Nitric oxide and oxygen radicals: a question of balance. FEBS Lett. 369, 131-135 (1995) https://doi.org/10.1016/0014-5793(95)00764-Z
  9. Guo, J., Zhu, T., Collins, L., Xiao, Z.X., Kim, S.H., and Chen, C.Y., Modulation of lung cancer growth arrest and apoptosis by Phellinus linteus. Mol. Carcinog. 46, 144-154 (2007) https://doi.org/10.1002/mc.20275
  10. Han, S.B., Lee, C.W., Jeon, Y.J., Hong, N.D., Yoo, I.D., Yang, K.H., and Kim, H.M., The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacol. 41, 157-164 (1999) https://doi.org/10.1016/S0162-3109(98)00063-0
  11. Han, S.B., Lee, C.W., Kang, J.S., Yoon, Y.D., Lee, K.H., Lee, K., Park, S. K., and Kim, H.M., Acidic polysaccharide from Phellinus linteus inhibits melanoma cell metastasis by blocking cell adhesion and invasion. Int. Immunopharmacol. 6, 697-702 (2006) https://doi.org/10.1016/j.intimp.2005.10.003
  12. Hamauzu, Y., Inno, T., Kume, C., Irie, M., and Hiramatsu, K., Antioxidant and antiulcerative properties of phenolics from Chinese quince, quince, and apple fruits. J. Agric. Food Chem. 54, 765-772 (2006) https://doi.org/10.1021/jf052236y
  13. Hisatomi, E., Matsui, M., Kubota, K., and Kobayashi, A., Antioxidative activity in the pericarp and seed of Japanese pepper (Xanthoxylum piperitum DC). J. Agric. Food Chem. 48, 4924-4928 (2000) https://doi.org/10.1021/jf000252j
  14. Ho, S.C., Tsai, T.H., Tsai, P.J., and Lin, C.C., Protective capacities of certain spices against peroxynitrite-mediated biomolecular damage. Food Chem. Toxicol. 30, Epub ahead of print (2007)
  15. Hur, J.M., Yang, C.H., Han, S.H., Lee, S.H., You, Y.O., Park, J.C., and Kim, K.J., Antibacterial effect of Phellinus linteus against methicillinresistant Staphylococcus aureus. Fitoterapia 75, 603-605 (2004) https://doi.org/10.1016/j.fitote.2004.06.005
  16. Huh, J., Dong-Eui-Bo-Gam, Namsandang Press, Seoul, 1981, p. 26
  17. Ikekawa, T., Nakanish, M., Uehara, N., Chihara, G., and Fukuoka, F., Antitumor action of some Basidiomycetes, especially Phellinus linteus. Gann. 59, 155-157 (1968)
  18. Im, K.R., Jeong, T.S., Kwon, B.M., Baek, N.I., Kim, S.H., and Kim, D.K., Acyl-CoA: Cholesterol acyltransferase inhibitors from Llex macropoda. Arch. Pharm. Res. 29, 191-194 (2006) https://doi.org/10.1007/BF02969391
  19. Kang, H.S., Choi, J.H., Cho, W.K., Park, J.C., and Choi, J.S., A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch. Pharm. Res. 27, 742-750 (2004) https://doi.org/10.1007/BF02980143
  20. Kerry, N. and Rice-Evans, C.A., Inhibition of peroxynitrite-mediated oxidation of dopamine by flavonoid and phenolic antioxidants and their structural relationships. J. Neruochem. 73, 247-253 (1999) https://doi.org/10.1046/j.1471-4159.1999.0730247.x
  21. Kim, D.H., Choi, H.J., and Bae, E.A., Effect of artificially cultured Phellinus linteus on harmful intestinal bacterial enzymes and rat intestinal a-glucosidases. J. Food Hyg. Safety 13, 20-23 (1998)
  22. Kim, J.E., Kim, A.R., Chung, H.Y., Han, S.Y., Kim, B.S., and Choi, J.S., In vitro peroxynitrite scavenging activity of diarylheptanoids from Curcuma longa. Phytother. Res. 17, 481-484 (2003) https://doi.org/10.1002/ptr.1179
  23. Kim, H.G., Yoon, D.H., Lee, W.H., Han, S.K., Shrestha, B., Kim, C.H., Lim, M.H., Chang, W., Lim, S., Choi, S., Song, W.O., Sung, J.M., Hwang, K.C., and Kim, T.W., Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-kappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J. Ethnopharmacol. 114, 307-315 (2007) https://doi.org/10.1016/j.jep.2007.08.011
  24. Klotz, L.O. and Sies, H., Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol. Lett. 140, 125-132 (2003) https://doi.org/10.1016/S0378-4274(02)00511-8
  25. Kooy, N.W., Royall, J.A., Ischiropoulos, H., and Beckman, J.S., Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16, 149-156 (1994) https://doi.org/10.1016/0891-5849(94)90138-4
  26. Kooy, N.W., Royall, J.A., Ye, Y.Z., Kelly, D.R., and Beckman, J.S., Evidence for in vivo peroxynitrite production in human acute lung injury. Am. J. Respir. Crit. Care Med. 151, 1250-1254 (1995)
  27. Lee, S.H., Shim, S.H., Kim, J.S., and Kang, S.S., Constituents from the fruiting bodies of Ganoderma applanatum and their aldose reductase inhibitory activity. Arch. Pharm. Res. 29, 479-483 (2006a) https://doi.org/10.1007/BF02969420
  28. Lee, I.K., Jung, J.Y., Seok, S.J., Kim, W.G., and Yun, B.S., Free radical scavengers from the medicinal mushroom Inonotus xeranticus and their proposed biogenesis. Bioorg. Med. Chem. Lett. 16, 5621-5624 (2006b) https://doi.org/10.1016/j.bmcl.2006.08.016
  29. Lee, Y.S., Lee, H.S., Shin, K.H., Kim, B.K., and Lee, S.H., Constituents of the Halophyte Salicornia herbacea. Arch. Pharm. Res. 27, 1034- 1036 (2004) https://doi.org/10.1007/BF02975427
  30. Lim, E.K., Higgins, G.S., Li, Y., and Bowles, J., Regioselectivity of glucosylation of caffeic acid by a UDP-glucose:glucosyltransferase is maintained in planta. Biochem. J. 373, 987-992 (2003) https://doi.org/10.1042/BJ20021453
  31. Min, B.S., Yun, B.S., Lee, H.K., Jung, H.J., Jung, H.A., and Choi, J.S., Two novel furan derivatives from Phellinus linteus with anticomplement activity. Bioorg. Med. Chem. Lett. 16, 3255-3257 (2006) https://doi.org/10.1016/j.bmcl.2006.03.027
  32. Mo, S., Wang, S., Zhou, G., Yang, Y., Li, Y., Chen, X., and Shi, J., Phelligridins D-F: cytotoxic pyrano[4,3-c][2]benzopyran-1,6-dione and furo[3,2-c]pyran-4-one derivatives from the fungus Phellinus igniarius. J. Nat. Prod. 67, 823-828 (2004) https://doi.org/10.1021/np030505d
  33. Nakamura, T., Matsugo, S., Uzuka, Y., Matsuo, S., and Kawagishi, H., Fractionation and anti-tumor activity of the mycelia of liquid-cultured Phellinus linteus. Biosci. Biotechnol. Biochem. 68, 868-872 (2004) https://doi.org/10.1271/bbb.68.868
  34. Nishida, J. and Kawabata, J., DPPH radical scavenging reaction of hydroxyl- and methoxychalcones. Biosci. Biotechnol. Biochem. 70, 193-202 (2006) https://doi.org/10.1271/bbb.70.193
  35. Okai, Y. and Higashi-Okai, K., Radical-scavenging activity of hot water extract of Japanese rice bran-association with phenolic acids. J. UOEH. 28, 1-12 (2006) https://doi.org/10.7888/juoeh.28.1
  36. Pannala, A., Rice-Evans, C.A., Halliwell, B., and Singh, S., Inhibition of peroxynitrite mediated tyrosine nitration by catechin polyphenols. Biochem. Biophy. Res. Commun. 232, 164-168 (1997) https://doi.org/10.1006/bbrc.1997.6254
  37. Pannala, A., Razaq, R., Halliwell, B., Singh S, and Rice-Evans, C.A., Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: Nitration or electron donation? Free Radic. Biol. Med. 24, 594-606 (1998) https://doi.org/10.1016/S0891-5849(97)00321-3
  38. Park, I.H., Jeon, S.Y., Lee, H.J., Kim, S.I., and Song, K.S., A betasecretase (BACE1) inhibitor hispidin from the mycelial cultures of Phellinus linteus. Planta Med. 70, 143-146 (2004a) https://doi.org/10.1055/s-2004-815491
  39. Park, I.H., Chung, S.K., Lee, K.B., Yoo, Y.C., Kim, S.K., Kim, G.S., and Song, K.S., An antioxidant hispidin from the mycelial cultures of Phellinus linteus. Arch. Pharm. Res. 27, 615-618 (2004b) https://doi.org/10.1007/BF02980159
  40. Park, H.W., Baek, N.I., Kim, S.H., Kwon, B.M., Chung, I.S., Park, M.H., Kim, S.H., and Kim, D.K., Phytochemical components from the whole plants of Arabis glabra (L.) Bernh. Kor. J. Pharmacogn. 35, 320-323 (2004c)
  41. Park, W.Y., Lee, S.C., Ahn, B.T., Lee, S.H., Ro, J.S., and Lee, K.S., Phenolic compounds from Acaloha australis L. Kor. J. Pharmacogn. 24, 20-24 (1993)
  42. Pollard, S.E., Kuhnle, G.G., Vauzour, D., Vafeiadou, K., Tzounis, X., Whiteman, M., Rice-Evans, C., and Spencer, J.P., The reaction of flavonoid metabolites with peroxynitrite. Biochem. Biophys. Res. Commun. 350, 960-968 (2006) https://doi.org/10.1016/j.bbrc.2006.09.131
  43. Pozharitskaya, O.N., Ivanova, S.A., Shikov, A.N., Makarov, V.G., and Galambosi, B., Separation and evaluation of free radical-scavenging activity of phenol components of green, brown, and black leaves of Bergenia crassifolia by using HPTLC-DPPH method. J. Sep. Sci. 30, 2447-2452 (2007) https://doi.org/10.1002/jssc.200700178
  44. Pryor, W. and Squadrito, G., The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, 699-722 (1996)
  45. Rhee, Y.K., Han, M.J., Park, S.Y., and Kim, D.H., In vitro and In vivo antitumor activity of the fruit body of Phellinus linteus. Korean J. Food Sci. Technol. 32, 477-480 (2000)
  46. Rice-Evans, C.A., Miller, N.J., and Paganga, G., Structure-antioxidant relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  47. Rosecke, J. and Konig, W.A., Constituents of various wood-rotting basidiomycetes. Phytochemistry 54, 603-610 (2000) https://doi.org/10.1016/S0031-9422(00)00165-5
  48. Salah, N., Miller, N.J., Paganga, G., Tijburg, L., Bolwell, G.P., and Rice- Evans, C., Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322, 339-346 (1995) https://doi.org/10.1006/abbi.1995.1473
  49. Sandoval, M., Zhang, X.J., Liu, X., Mannick, E.E., Clark, D.A., and Miller, M.J., Peroxynitrite-induced apoptosis in T84 and RAW 264.7 cells: attenuation by L-ascorbic acid. Free Radic. Biol. Med. 22, 489- 495 (1997) https://doi.org/10.1016/S0891-5849(96)00374-7
  50. Shin, J.Y., Lee, S., Bae, I.Y., Yoo, S.H., and Lee, H.G., Structural and biological study of c arboxymethylated Phellinus linteus polysaccharides. J. Agric. Food Chem. 55, 3368-3372 (2007) https://doi.org/10.1021/jf063003p
  51. Shon, Y.H. and Nam, K.S., Antimutagenicity and induction of anticarcinogenic phase II enzymes by basidiomycetes. J. Ethnopharmacol. 77, 103-109 (2001) https://doi.org/10.1016/S0378-8741(01)00276-8
  52. Sies, H. and Masumoto, H., Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol. 38, 229-246 (1997)
  53. Singh, N., Mahmood, U., Kaul, V.K., and Jirovetz, L., A new phthalic acid ester from Ajuga bracteosa. Nat. Prod. Res. 20, 593-597 (2006) https://doi.org/10.1080/14786410500185550
  54. Song, S.S., Kim, S.H., Sa, J.H., Jin, C., Lim, C.J., and Park, E.H., Antiangiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J. Ethnopharmocol. 88, 113-116 (2003) https://doi.org/10.1016/S0378-8741(03)00178-8
  55. Sun, L.X., Fu, W.W., Ren, J., Xu, L., Bi, K.S., and Wang, M.W., Cytotoxic constituents from Solanum lyratum. Arch. Pharm. Res. 29, 135-139 (2006) https://doi.org/10.1007/BF02974274
  56. Szabo, C., The role of peroxynitrite in the pathophysiology of shock, inflammation and ischemia-reperfusion injury. Shock 6, 79-88 (1996) https://doi.org/10.1097/00024382-199608000-00001
  57. Teijeira, M., Santana, L., and Uriarte, E., Assignment of the $^{13}C$-NMR spectra of some adenine, hypoxanthine and guanine carbonucleosides. Magn. Reson. Chem. 35, 806-807 (1997) https://doi.org/10.1002/(SICI)1097-458X(199711)35:11<806::AID-OMR157>3.0.CO;2-M
  58. Tipoe, G.L., Leung, T. M., Hung, M. W., and Fung, M. L., Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc. Hematol. Disord. Drug Targets. 7, 135-144 (2007) https://doi.org/10.2174/187152907780830905
  59. Virag, L., Szabo, E., Gergely, P., and Szabo, C., Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol. Lett. 140, 113-124 (2003) https://doi.org/10.1016/S0378-4274(02)00508-8
  60. Yun-Choi, H.S., Pyo, M.K., and Park, K.M., Cirsiumaldehyde from Gastrodia elata, Nat. Prod. Sci. 3, 104-105 (1997)