• Title/Summary/Keyword: Oxidative carbonylation

Search Result 20, Processing Time 0.049 seconds

Effects of chronic caloric restriction on kidney and heart redox status and antioxidant enzyme activities in Wistar rats

  • Dutra, Marcio Ferreira;Bristot, Ivi Juliana;Batassini, Cristiane;Cunha, Nubia Broetto;Vizuete, Adriana Fernanda Kuckartz;Souza, Daniela Fraga De;Moreira, Jose Claudio Fonseca;Goncalves, Carlos-Alberto
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.671-676
    • /
    • 2012
  • Caloric restriction (CR) has been associated with health benefits and these effects have been attributed, in part, to modulation of oxidative status by CR; however, data are still controversial. Here, we investigate the effects of seventeen weeks of chronic CR on parameters of oxidative damage/modification of proteins and on antioxidant enzyme activities in cardiac and kidney tissues. Our results demonstrate that CR induced an increase in protein carbonylation in the heart without changing the content of sulfhydryl groups or the activities of superoxide dismutase and catalase (CAT). Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney. Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney.

Effect of Dehydration on DMC Synthesis over Ceria Catalysts (Ceria 촉매상에서 탈수가 DMC 합성에 미치는 영향)

  • You, Jiin;Woo, Je-Min;Kim, Hyunuk;Park, Young Cheol;Park, Jong-Ho;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this study, ceria- based catalysts were prepared for dimethyl carbonate (DMC) synthesis and reaction conditions were evaluated for finding the optimal reaction route. In order to find optimal catalysts for DMC synthesis, calcination temperature and Cu(II) impregnation amount were evaluated. The oxidative carbonylation using methanol, carbon monoxide and oxygen and the direct synthesis using methanol and carbon dioxide were introduced for producing DMC. Following the law of Le Chatelier, the dehydration reaction was applied for enhancing the reactivity (methanol conversion) as removing water during the reaction. 2-cyanopyridine, as a chemical dehydration agent, was used. In the case of the oxidative carbonylation, methanol conversion rate increased from 15.1% to 38.7% and the DMC selectivity increased from 0% to 98.8%. In the case of the direct synthesis, methanol conversion rate increased from 1.0% to 77.8% and the DMC selectivity increased from 41.2% to 100.0%.

Study on Preparation of Methyl N-Phenyl Carbamate by Oxidative Carbonylation of Aniline and Methanol (아닐린과 메탄올의 산화 카르보닐화에 의한 Methyl N-phenyl carbamate 제조 연구)

  • Roh, Jong-Seon;Lee, Kwan-Young;Kim, Tae-Soon;Chang, Tae-Seon;Yoon, Byung-Tae;Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.119-124
    • /
    • 2018
  • The production of methyl N-phenyl carbamate by an oxidative carbonylation method of aniline and methanol is of great interest as an environmentally friendly process that can replace the monomer production process of a polymer produce using conventional phosgene. In this study, heterogeneous catalysts were prepared by using Y-zeolite, $SiO_2$, $Al_2O_3$ as support, and oxidative carbonylation continuous operation from aniline and methanol was attempted using the prepared heterogeneous catalyst. Batch reactor was used to determine the support, and various reaction conditions such as reaction temperature, reaction pressure, and effect of promoter were established using palladium catalyst. A reaction kinetics study was conducted under optimum reaction conditions. The basic data for carbamate process development were obtained by performing continuous operation for a long time under established reaction condition.

Glycerol Carbonate Synthesis by Glycerol Oxidative Carbonylation over Copper Catalysts (구리 촉매상에서 글리세롤의 산화 카르보닐화 반응에 의한 글리세롤 카보네이트 합성)

  • Choi, Jae Hyung;Lee, Sang Deuk;Woo, Hee Chul
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.416-422
    • /
    • 2013
  • In environmental friendly aspects, the synthesis of glycerol carbonate from glycerol using carbon monoxide and oxygen gases which were produced in petrochemical plants was studied. The oxidative carbonylation of glycerol under batch reaction system was performed on parameter conditions such as effect of various metals (Cu, Pd, Fe, Sn, Zn, Cr), oxidizing agents, mole ratio of carbon monoxide to oxygen, catalyst amount, solvent types, reaction temperature and time and dehydrating agents. In particular copper chloride catalysts showed the excellent activities, and the glycerol carbonate yields over CuCl and $CuCl_2$ catalysts were the maximum of 44% and 64%, respectively at the following reaction conditions: solvent as nitrobenzene, mole ratio of 1:3:0.15 (glycerol:carbon monoxide:catalyst), mole ratio of 2:1 (carbon monoxide:oxygen), the total pressure of 30 bar at 413 K for 4 hr. It was found that reactivity were significantly different depending on the oxidation number of Cu catalysts, and oxygen plays an important role as oxidizing agents in producing H2O during oxidation reaction after carbonylation of glycerol.

Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice

  • Sinha, Mahua;Manna, Prasenjit;Sil, Parames C.
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.657-663
    • /
    • 2008
  • The present study was undertaken to investigate the protective role of taurine (2-aminoethanesulfonic acid) against cadmium (Cd) induced oxidative stress in murine erythrocytes. Cadmium chloride ($CdCl_2$) was chosen as the source of Cd. Experimental animals were treated with either $CdCl_2$ alone or taurine, followed by Cd exposure. Cd intoxication reduced hemoglobin content and the intracellular Ferric Reducing/Antioxidant Power of erythrocytes, along with the activities of antioxidant enzymes, glutathione content, and total thiols. Conversely, intracellular Cd content, lipid peroxidation, protein carbonylation, and glutathione disulphides were significantly enhanced in these cells. Treatment with taurine before Cd intoxication prevented the toxin-induced oxidative impairments in the erythrocytes of the experimental animals. Overall, the results suggest that Cd could cause oxidative damage in murine erythrocytes and that taurine may play a protective role in reducing the toxic effects of this particular metal.

Dimethyl Carbonate Synthesis by Methanol Oxidative Carbonylation (메탄올 산화 카르보닐화에 의한 디메틸카보네이트 합성)

  • Nam, Jeong-Kwang;Cho, Deug-Hee;Suh, Jeong-Kwon;Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.530-534
    • /
    • 2011
  • The synthesis of dimethyl carbonate by liquid phase oxidative carbonylation of methanol was studied under batch reaction system. Reaction factors such as effect on various metals, anion containing in copper catalyst, temperature, carbon monoxide and oxygen molar ratio and copper content were investigated. In particular $CuCl_2{\cdot}2H_2O$ showed the excellent of the methanol conversion 65.2%, DMC selectivity 96.6% reaction condition under 1.0 g, $150^{\circ}C$, MeOH/CO/$O_2$=0.2/0.215/0.05 (molar ratio). $CuCl_2$ led to corrosion of the reactor. Thus, a new catalyst system using supports was investigated to resolve these corrosion problem. Influence on various supports were examined and copper catalyst supported on zeolite Y showed the most excellent activity on the formation of dimethyl carbonate. The amount of Fe dissolved during the reaction using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometer) was compared with catalysts, calcined Cu/zeolite Y showed the lower value below 5% than $CuCl_2-2H_2O$.

Kinetics of Ethyl Phenylcarbamate Synthesis by the Oxidative Carbonylation of Aniline (아닐린의 산화적 카르보닐화에 의한 에틸페닐카바메이트의 합성의 속도론적 고찰)

  • Park, Nae-Joung;Park, Jae-Keun
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.710-716
    • /
    • 1992
  • Ethylphenyl carbarmate(EPC) was synthesized by oxidative CO carbonylation of aniline in the presence of transition metal catalysts and alkali metal halide cocatalysts at $120^{\circ}C$ under the pressure of 79atm. Oxygen gas was used for oxidizing agent. Kinetics of the reaction was studied and activation energies with different catalysts were estimated. About 100% conversion to EPC and 95% selectivity was obtained in 5 hour reaction. 5% Pd/C was more effective than 5% Rh/C. Effectiveness of cocatalysts was in the order of KI>KBr>KCl. As the temperature increased from $75^{\circ}C$ to $120^{\circ}C$, the conversion rate increased. The reaction was apparent first order and the activation energies with 5% Pd/C and 5% Rh/C were 5.647 and 5.780 kcal/mol, respectively.

  • PDF

Synthesis of Dimethyl Carbonate by Oxidative Carbonylation of Methanol over Cu Catalysts (구리촉매 상에서의 메탄을 산화카르보닐화에 의한 디메틸카보네이트 합성)

  • Park, Jin-Seok;Suh, Young-Woong;Park, Tae-Jin;Suh, Dong-Jin
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.160-165
    • /
    • 2008
  • The synthesis of dimethyl carbonate (DMC) with Cu catalysts was investigated in a semi-batch high-pressure reactor. DMC was synthesized via the direct oxidative carbonylation of carbon monoxide with oxygen in methanol. The corrosion rate was evaluated fie the weight change for SUS test pieces which had been added into the reactor. In order to reduce the corrosion rate without significantly losing DMC yield, various additives such as amines, olefins, and other metal salts were used. When 1-methylimidazole was used as an additive, 18.6% of DMC yield could be obtained without corrosion. If the amount of 1-methylimidazole was decreased, a high DMC yield (33.2%) could be obtained with a low corrosion rate (0.5%).

  • PDF

Protective Effect of Fisetin (3,7,3',4'-Tetrahydroxyflavone) against γ-Irradiation-Induced Oxidative Stress and Cell Damage

  • Piao, Mei Jing;Kim, Ki Cheon;Chae, Sungwook;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.210-215
    • /
    • 2013
  • Ionizing radiation can induce cellular oxidative stress through the generation of reactive oxygen species, resulting in cell damage and cell death. The aim of this study was to determine whether the antioxidant effects of the flavonoid fisetin (3,7,3',4'-tetrahydroxyflavone) included the radioprotection of cells exposed to ${\gamma}$-irradiation. Fisetin reduced the levels of intracellular reactive oxygen species generated by ${\gamma}$-irradiation and thereby protected cells against ${\gamma}$-irradiation-induced membrane lipid peroxidation, DNA damage, and protein carbonylation. In addition, fisetin maintained the viability of irradiated cells by partially inhibiting ${\gamma}$-irradiation-induced apoptosis and restoring mitochondrial membrane potential. These effects suggest that the cellular protective effects of fisetin against ${\gamma}$-irradiation are mainly due to its inhibition of reactive oxygen species generation.