Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.11.094

Effects of chronic caloric restriction on kidney and heart redox status and antioxidant enzyme activities in Wistar rats  

Dutra, Marcio Ferreira (Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul)
Bristot, Ivi Juliana (Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul)
Batassini, Cristiane (Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul)
Cunha, Nubia Broetto (Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul)
Vizuete, Adriana Fernanda Kuckartz (Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul)
Souza, Daniela Fraga De (Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul)
Moreira, Jose Claudio Fonseca (Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul)
Goncalves, Carlos-Alberto (Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul)
Publication Information
BMB Reports / v.45, no.11, 2012 , pp. 671-676 More about this Journal
Abstract
Caloric restriction (CR) has been associated with health benefits and these effects have been attributed, in part, to modulation of oxidative status by CR; however, data are still controversial. Here, we investigate the effects of seventeen weeks of chronic CR on parameters of oxidative damage/modification of proteins and on antioxidant enzyme activities in cardiac and kidney tissues. Our results demonstrate that CR induced an increase in protein carbonylation in the heart without changing the content of sulfhydryl groups or the activities of superoxide dismutase and catalase (CAT). Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney. Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney.
Keywords
Carbonylation; Dietary reduction; Food intake; Oxidative stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fontana, L., Partridge, L. and Longo, V. D. (2010) Extending healthy life span-from yeast to humans. Science 328, 321-326.   DOI   ScienceOn
2 Speakman, J. R. and Mitchell, S. E. (2011) Caloric restriction. Mol. Aspects Med. 32, 159-221.   DOI   ScienceOn
3 Sohal, R. S. and Weindruch, R. (1996) Oxidative stress, caloric restriction, and aging. Science 273, 59-63.   DOI   ScienceOn
4 Masoro, E. J. (2009) Caloric restriction-induced life extension of rats and mice: A critique of proposed mechanisms. Biochim. Biophys. Acta 1790, 1040-1048.   DOI   ScienceOn
5 Fontana, L. and Klein, S. (2007) Aging, adiposity, and calorie restriction. JAMA 297, 986-994.   DOI   ScienceOn
6 Hunt, N. D., Hyun, D. H., Allard, J. S., Minor, R. K., Mattson, M. P., Ingram, D. K. and De Cabo, R. (2006) Bioenergetics of aging and calorie restriction. Ageing Res. Rev. 5, 125-143.   DOI   ScienceOn
7 Lee, D. W. and Yu, B. P. (1991) Food restriction as an effective modulator of free radical metabolism in aging rats. Korean Biochem. J. 24, 148-154.   과학기술학회마을
8 Forman, H. J., Maiorino, M. and Ursini, F. (2010) Signaling functions of reactive oxygen species. Biochemistry 49, 835-842.   DOI   ScienceOn
9 Burhans, W. C. and Heintz, N. H. (2009) The cell cycle is a redox cycle: Linking phase-specific targets to cell fate. Free Radic. Biol. Med. 47, 1282-1293.   DOI   ScienceOn
10 Halliwell, B. (2007) Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147-1150.   DOI   ScienceOn
11 Requena, J. R., Chao, C. C., Levine, R. L. and Stadtman, E. R. (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc. Natl. Acad. Sci. U.S.A. 98, 69-74.   DOI
12 Berlett, B. S. and Stadtman, E. R. (1997) Protein Oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316.   DOI   ScienceOn
13 Kusmierek, K., Chwatko, G., Głowacki, R. and Bald, E. (2009) Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 3300-3308.   DOI   ScienceOn
14 Di Simplicio, P., Franconi, F., Frosali, S. and Di Giuseppe, D. (2003) Thiolation and nitrosation of cysteines in biological fluids and cells. Amino Acids. 25, 323-339.   DOI   ScienceOn
15 Martin, B., Mattson, M. P. and Maudsley, S. (2006) Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res. Rev. 5, 332-353.   DOI   ScienceOn
16 Santin, K., Da Rocha, R. F., Cechetti, F., Quincozes- Santos, A., De Souza, D. F., Nardin, P., Rodrigues, L., Leite, M. C., Moreira, J. C. F., Salbego, C. G. and Gonçalves, C. A. (2011) Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus. Brain Res. 1421, 1-10.   DOI   ScienceOn
17 Ribeiro, L. C., Quincozes-Santos, A., Leite, M. C., Abib, R. T., Kleinkauf-Rocha, J., Biasibetti, R., Rotta, L. N., Wofchuk, S. T., Perry, M. L. S., Goncalves, C. A. and Gottfried, C. (2009) Caloric restriction increases hippocampal glutamate uptake and glutamine synthetase activity in Wistar rats. Neurosci. Res. 64, 330-334.   DOI   ScienceOn
18 Judge, S., Judge, A., Grune, T. and Leeuwenburgh, C. (2004) Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R254-R259.   DOI
19 Sohal, R. S., Ku, H. H., Agarwal, S., Forster, M. J. and Lal, H. (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 74, 121-133.   DOI   ScienceOn
20 Chen, J., Velalar, C. N. and Ruan, R. (2008) Identifying the changes in gene profiles regulating the amelioration of age-related oxidative damages in kidney tissue of rats by the intervention of adult-onset calorie restriction. Rejuvenation Res. 11, 757-763.   DOI   ScienceOn
21 Colotti, C., Cavallini, G.,Vitale, R. L., Donati, A., Maltinti, M., Del Ry, S., Bergamini, E. and Giannessi, D. (2005) Effects of aging and anti-aging caloric restrictions on carbonyl and heat shock protein levels and expression. Biogerontology 6, 397-406.   DOI   ScienceOn
22 Stadtman, E. R. and Berlett, B. S. (1998) Reactive oxygenmediated protein oxidation in aging and disease. Drug Metab. Rev. 30, 225-243.   DOI   ScienceOn
23 Nyström, T. (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24, 1311-1317.   DOI   ScienceOn
24 Nakamura, A., Kawakami, K., Kametani, F., Nakamoto, H. and Goto, S. (2010) Biological significance of protein modifications in aging and calorie restriction. Ann. N. Y. Acad. Sci. 1197, 33-39.   DOI   ScienceOn
25 Forster, M. J., Sohal, B. H. and Sohal, R. S. (2000) Reversible effects of long-term caloric restriction on protein oxidative damage. J. Gerontol. A Biol. Sci. Med. Sci. 55A, B522-529.
26 Simonetti, I., De Tata, V., Del Roso, A., Gori, Z. and Bergamini, E. (1990) Changes in the transmural distribution of antioxidant enzyme activities across the left ventricle heart wall from rats fed ad libitum or food-restricted during growth and aging. Arch. Gerontol. Geriart. 10, 163-171.   DOI   ScienceOn
27 Cadenas, S., Rojas, C., Perez-Campo, R., Lopez-Torres, M. and Barja, G. (1994) Caloric and carbohydrate restriction in the kidney: effects on free radical metabolism. Exp. Gerontol. 29, 77-88.   DOI   ScienceOn
28 Anderson, R. M., Shanmuganayagam, D. and Weindruch, R. (2009) Caloric restriction and aging: studies in mice and monkeys. Toxicol. Pathol. 37, 47-51.   DOI
29 Kamzalov, S. and Sohal, R. S. (2004) Effect of age and caloric restriction on coenzyme Q and ${\alpha}$-tocopherol levels in the rat. Exp. Gerontol. 39, 1199-1205.   DOI   ScienceOn
30 Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S. and Stadtman, E. R. (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464-478.   DOI
31 Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70-77.   DOI   ScienceOn
32 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126.   DOI   ScienceOn
33 Misra, H. P. and Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170- 3175.
34 Peterson, G. L., (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346-356.   DOI   ScienceOn