• 제목/요약/키워드: Oxidative

검색결과 6,085건 처리시간 0.034초

Effect of Schizandra chinensis Extracts on Oxidative Damage

  • Park, Young-Mi;Lim, Jae-Hwan;Jeong, Hyung-Jin;Seo, Eul-Won
    • 대한의생명과학회지
    • /
    • 제17권1호
    • /
    • pp.69-77
    • /
    • 2011
  • In this study, we evaluated the protective effects of supercritical extracts and two step ethanol extracts after supercritical extraction from Schizandra chinensis on antioxidant activities and oxidative DNA and cell damages. Supercritical extracts removed DPPH (1,1-diphenyl-2-picryldrazyl) radical by 85.5% at 200 ${\mu}g$/ml, but showed low activities of scavenging and chelating the hydroxyl radical and ferrous iron. However, two step ethanol extracts showed low activities of scavenging the DPPH radical, but removed the hydroxyl radical by 86% at 200 ${\mu}g$/ml. In addition, we tested the activities of extracts for reducing hydroxyl radical-induced DNA and cell damage. Two step ethanol extracts showed protective effect against the oxidative DNA damage by reducing DNA segmentation, inhibiting DNA migration and decreasing the expression of phospho-H2AX. Also, two step ethanol extracts showed protective effect against the oxidative cell damage by inhibiting lipid peroxidation and increasing the expression of p21 protein. Taken together, we suggest that two step ethanol extracts from S. chinensis have a role as useful inhibitors against oxidative damages.

백두옹 분획층의 항산화 효과 (Anti-oxidative effects of fractionated Pulsatilla koreana $N_{AKAI}$ extracts)

  • 조현진;윤현정;이효승;박선동
    • 대한본초학회지
    • /
    • 제25권2호
    • /
    • pp.99-106
    • /
    • 2010
  • Objectives : This study was designed to investigate the effects of anti-oxidation of fractionated Pulsatilla koreana $N_{AKAI}$ (PK) extracts. And we examined to determine that a certain fractionated extract has the best anti-oxidative effects between the fractionated PK extracts. Methods : Anti-oxidative effects of fractionated PK extracts was measured by scavenging activities of DPPH, superoxide, nitric oxide (NO) and peroxynitrite radicals. And also scavenging activities of anti-oxidation in lipopolysaccharide (LPS)-treated RAW 264.7 cell was measured. After these examination, we determined a fraction that has best anti-oxidative effects. Results : Fractionated PK extracts inhibited radicals effectively. Also in RAW 264.7 cell, intracellular oxidation has inhibited by PK extracts. In these tests, ethyl acetate (EA) fraction has the best anti-oxidative effects among PK extracts. Conclusions : This results demonstrate that PK extracts exhibit anti-oxidative effects. And EA fraction has the best inhibition effects among the six fractions of PK.

Anti-oxidant Effect of Agastache rugosa on Oxidative Damage Induced by $H_2O_2$ in NIH 3T3 Cell

  • Hong, Se-Chul;Jeong, Jin-Boo;Park, Gwang-Hun;Kim, Jeong-Sook;Seo, Eul-Won;Jeong, Hyung-Jin
    • 한국자원식물학회지
    • /
    • 제22권6호
    • /
    • pp.498-505
    • /
    • 2009
  • The plant Agastache rugosa Kuntze has various physiological and pharmacological activities. Especially, it has been regarded as a valuable source for the treatment of anti-inflammatory and oxidative stress-induced disorders. However, little has been known about the functional role of it on oxidative damage in mammalian cells by ROS. In this study, we investigated the DPPH radical, hydroxyl radical, hydrogen peroxide and intracellular ROS scavenging capacity, and $Fe^{2+}$ chelating activity of the extracts from Agastache rugosa. In addition, we evaluated whether the extract can be capable of reducing $H_2O_2$-induced DNA and cell damage in NIH 3T3 cells. These extracts showed a dose-dependent free radical scavenging capacity and a protective effect on DNA damage and the lipid peroxidation causing the cell damage by $H_2O_2$. Therefore, these results suggest that Agastache rugosa is useful as a herbal medicine for the chemoprevention against oxidative carcinogenesis.

일차 배양한 흰쥐 대뇌피질세포의 흥분성 및 산화적 신경세포손상에 대한 소전재조환의 억제효과 (Inhibitory Effects of Xiaoshuan Zaizao Wan on Excitotoxic and Oxidative Neuronal Damage Induced in Primary Cultured Rat Cortical Cells)

  • 조정숙
    • 약학회지
    • /
    • 제47권6호
    • /
    • pp.369-375
    • /
    • 2003
  • Xiaoshuan Zaizao Wan (XZW) has been used in China to improve hemiplegia, deviation of eye and mouth, and dysphasia due to cerebral thrombosis. To characterize pharmacological actions of XZW, we evaluated its effects on neuronal cell damage induced in primary cultured rat cortical cells by various oxidative insults, glutamate or N-methyl-D-aspartate (NMDA), and $\beta$-amyloid fragment ($A_{\beta(25-35)}$). XZW was found to inhibit the oxidative neuronal damage induced by $H_2O_2$, xanthine/xanthine oxidase, or $Fe^{2+}$/ascorbic acid. It also attenuated the excitotoxic damage induced by glutamate or NMDA. The NMDA-induced neurotoxicity was more effectively inhibited than the glutamate-induced toxicity. In addition, we found that XZW protected neurons against the $A_{\beta(25-35)}$-induced toxicity. Moreover; XZW exhibited dramatic inhibition of lipid peroxidation in rat brain homogenates and mild 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together; these results demonstrate that XZW exerts neuroprotective effects against oxidative, excitotoxic, or $A_{\beta(25-35)}$-induced neuronal damage. These findings may provide pharmacological basis for its clinical usage treating the sequelae caused by cerebral thrombosis. Furthermore, XZW may exert beneficial effects on Alzheimer's disease and other oxidative stress-related neurodegenerative disorders.

태반 추출물의 자가포식 활성을 통해 산화스트레스에 대한 슈반세포 보호 효과 (Protective Effect of Placental Extract against Oxidative Stress through Autophagy Activity in Schwann Cells)

  • 임경민;조광원;장철호
    • 통합자연과학논문집
    • /
    • 제15권3호
    • /
    • pp.123-129
    • /
    • 2022
  • Schwann cells play a critical role for myelination in peripheral nerve system. It also plays an important role in nerve protection and regeneration. In peripheral nerve damage, regeneration is induced by the migration and proliferation of Schwann cells which were promoted by suppressing the oxidative stress. In this study, Human placental extract was prepared by homogenization and estimated its efficacy in RSC96 cells. Placental extract exhibited a protective effect against hydrogen peroxide-induced oxidative stress in RSC96 cells, confirmed by MTT assay. Furthermore, placental extract decreased intracellular ROS against oxidative stress, confirmed by DCFH-DA assay. Autophagy was visualized with Cyto-ID staining to confirm the autophagy activity of placental extracts. The activity of autophagy was confirmed by immunoblot analysis of autophagy flux-associated proteins such as LC3 conversion and SQSTM1 degradation. Thus, we confirmed the antioxidant effect of placental extract to protect RSC96 cells from oxidative stress, and observed that it activated autophagy and restored autophagy flux.

Antioxidation and anti-inflammatory effects of gamma-irradiated silk sericin and fibroin in H2O2-induced HaCaT Cell

  • Ji-Hye Choi;Sangmin Lee;Hye-Ju Han;Jungkee Kwon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.105-112
    • /
    • 2023
  • Oxidative stress in skin cells can induce the formation of reactive oxygen species (ROS), which are critical for pathogenic processes such as immunosuppression, inflammation, and skin aging. In this study, we confirmed improvements from gamma-irradiated silk sericin (I-sericin) and gamma-irradiated silk fibroin (I-fibroin) to skin cells damaged by oxidative stress. We found that I-sericin and I-fibroin effectively attenuated oxidative stress-induced ROS generation and decreased oxidative stress-induced inflammatory factors COX-2, iNOS, tumor necrosis factor-α, and interleukin-1β compared to the use of non-irradiated sericin or fibroin. I-sericin and Ifibroin effects were balanced by competition with skin regenerative protein factors reacting to oxidative stress. Taken together, our results indicated that, compared to non-irradiated sericin or fibroin, I-sericin, and I-fibroin had anti-oxidation and antiinflammation activity and protective effects against skin cell damage from oxidative stress. Therefore, gamma-irradiation may be useful in the development of cosmetics to maintain skin health.

Neuroprotective effects of paeoniflorin against neuronal oxidative stress and neuroinflammation induced by lipopolysaccharide in mice

  • Meng, Hwi Wen;Lee, Ah Young;Kim, Hyun Young;Cho, Eun Ju;Kim, Ji Hyun
    • Journal of Applied Biological Chemistry
    • /
    • 제65권1호
    • /
    • pp.23-31
    • /
    • 2022
  • Oxidative stress and neuroinflammation play important roles in the pathogenesis of Alzheimer's disease (AD). This study investigated the protective effects of paeoniflorin (PF) against neuronal oxidative stress and neuroinflammation in lipopolysaccharide (LPS)-induced mice. The brains of LPS-injected control group showed significantly increased neuroinflammation by activating the nuclear factor kappa B (NF-κB) pathway and increasing inflammatory mediators. However, administration of PF significantly attenuated oxidative stress by inhibiting lipid peroxidation, nitric oxide levels, and reactive oxygen species production in the brain; PF at doses of 5 and 10 mg/kg/day downregulated the expression of NF-κB pathway-related proteins and significantly decreased inflammatory mediators including inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the levels of brain-derived neurotrophic factor and its receptor, tropomycin receptor kinase B, were significantly increased in PF-treated mice. Furthermore, acetylcholinesterase activity and the ration of B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X were significantly reduced by PF in the brains of LPS-induced mice, resulting in the inhibition of cholinergic dysfunction and neuronal apoptosis. Thus, we can conclude that administration of PF to mice prevents the development of LPS-induced AD pathology through the inhibition of neuronal oxidative stress and neuroinflammation, suggesting that PF has a therapeutic potential for AD.

Aquaporin-3 Downregulation in Vitiligo Keratinocytes Increases Oxidative Stress of Melanocytes

  • Nan-Hyung Kim;Ha Jung Kim ;Ai-Young Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.648-654
    • /
    • 2023
  • Oxidative stress-induced melanocyte apoptosis is linked to the immune system and plays a critical role in the pathogenesis of vitiligo. Aquaporin-3 (AQP3), which is downregulated in vitiligo keratinocytes, regulates intracellular H2O2 accumulation. However, the role of AQP3 in oxidative stress is uncertain in vitiligo. This study investigated the effect of downregulated AQP3 on oxidative stress in vitiligo using lesional and non-lesional skin specimen sets from vitiligo patients and primary cultured adult normal human epidermal keratinocytes, with or without downregulation and overexpression of AQP3 in the presence or absence of H2O2 treatment. The levels of nuclear factor E2-related factor 2 (NRF2) and/or its main target, NAD(P)H quinone dehydrogenase 1 (NQO-1), were lower in the lesional keratinocytes and cultured keratinocytes with AQP3 knockdown, but were increased in keratinocytes upon AQP3 overexpression. Ratios of NRF2 nuclear translocation and NQO-1 expression levels were further reduced in AQP3-knockdown keratinocytes following H2O2 treatment. The conditioned media from AQP3-knockdown keratinocytes treated with H2O2 contained higher concentrations of reactive oxygen species (ROS). Moreover, the number of viable melanocytes was reduced when the conditioned media were added to the culture media. Overall, AQP3 downregulation in the keratinocytes of patients with vitiligo can induce oxidative stress in neighboring melanocytes, leading to melanocyte death.

안구의 기능이상에 대한 산화스트레스의 중요성 (Importance of Oxidative Stress in Ocular Dysfunction)

  • 이지영
    • 한국안광학회지
    • /
    • 제13권3호
    • /
    • pp.103-109
    • /
    • 2008
  • 목적: 본 논문에서는 활성산소(reactive oxygen species, ROS)와 활성질소(reactive oxygen species, RNS)생성의 결과 초래되는 산화스트레스(oxidative stress)와 안질환과의 관계, 특히, 백내장발생과의 관련성 연구에 대한 고찰과, 안구의 기능이상에 있어 산화스트레스의 매개체(mediator)로서 과산화지질(lipid peroxide)의 역할에 대해 논의하고자 한다. 방법: 산화스트레스는 단백질 산화, DNA 파괴, 세포사(apoptosis), 지질과산화(lipid peroxidation) 등의 다양한 세포손상을 나타낸다. 이러한 손상은 많은 질병의 발생과 관련되어 있다. 백내장 발생의 주요한 원인중의 하나가 안구조직이 일정하고 지속적으로 산화스트레스의 환경에 노출되는 것으로 알려져 있다. 따라서 산화스트레스의 안구기능이상에 대한 역할을 조사하였다. 결과: 수정체는 자외선에의 만성적인 노출과 세포대사과정에서 필수불가결하게 생성되는 활성산소에 의해 끊임없이 공격을 받는다. 과도하게 생성된 활성산소에 의한 수정체 단백질의 분해(degradation), 산화(oxidation), 가교형성(crosslinking), 응집(aggregation) 등은 백내장발생에 있어 중요한 요인으로 사료된다. 결론: 산화스트레스와 체내의 산화/항산화 불균형이 과도한 활성산소를 생성하게 되고 결국, 안구의 기능이상을 일으킨다고 할 수 있다. 이러한 결과들에도 불구하고, 산화스트레스와 안구이상과의 관계를 더욱 정확하게 설명할 수 있는 분자기전에 대한 정보는 아직 부족한 상태이며, 더욱 많은 연구가 필요하다.

  • PDF

Oxidative Stress and Antioxidants in Disease and Cancer: A Review

  • Gupta, Rakesh Kumar;Patel, Amit Kumar;Shah, Niranjan;Choudhary, Arun Kumar;Jha, Uday Kant;Yadav, Uday Chandra;Gupta, Pavan Kumar;Pakuwal, Uttam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4405-4409
    • /
    • 2014
  • Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.