• Title/Summary/Keyword: Oxidation with $H_2O_2$

Search Result 957, Processing Time 0.028 seconds

Interaction Metal Ions with NADH Model Compounds. Cupric Ion Oxidation of Dihydronicotinamides

  • Park, Joon-Woo;Yun, Sung-Hoe;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.298-303
    • /
    • 1988
  • Kinetic studies on cupric ion ($Cu^{2+}$) oxidation of 1-benzyl- and 1-aryl-1,4-dihydronicotinamides (XNAH) in aqueous solution were performed. In the presence of dioxygen ($O_2$), the reaction followed first order kinetics with respect to both XNAH and $Cu^{2+}$. The oxidation reaction was found to be independent and parallel to the acid-catalyzed hydration reaction of XNAH. The catalytic role of $Cu^{2+}$ for the oxidation of XNAH in the presence of $O_2$ was attributed to $Cu^{2+}/Cu^+$ redox cycle by the reactions with XNAH and $O_2$. The second order rate constants of the Cu2+ oxidation reaction kCu, and acid-catalyzed hydration reaction $k_H$ were strongly dependent on the nature of the substituents in 1-aryl moiety. The slopes of log $k_{Cu}$ vs log $K_H$ and log $k_{Cu}$ vs ${\sigma}_p$ of the substituents plots were 1.64 and -2.2, respectively. This revealed the greater sensitivity of the oxidation reaction rate to the electron density on the ring nitrogen than the hydration reaction rate. A concerted two-electron transfer route involving XNAH-$Cu^{2+}$ complex was proposed for mechanism of the oxidation reaction.

Surface Characteristics and Photocatalytic Propertiy of B Doped TiO2 Layer Synthesized by Plasma Electrolytic Oxidation Process (Plasma Electrolytic Oxidation 방식으로 제조된 B Doped TiO2의 표면특성과 광촉매 특성)

  • Lee, Jong-Ho;Lee, Young-Ki;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.552-561
    • /
    • 2021
  • For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.

Study on the Photocatalytic Efficiencies of $TiO_2$ ($TiO_2$의 광촉매 효율성에 관한 연구)

  • Lee, J.H.;Oh, H.J.;Jang, J.M.;Chi, C.S.
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • Photocatalytic $TiO_2$ films were prepared by anodic oxidation at 180 V and their structural difference caused by oxidation conditions was studies. The microstructure of $TiO_2$ films in $H_2SO_4$ and $H_2SO_4/H_2O_2$ solution was mixed type of rutile and anatase. However, the $TiO_2$ layer formed in $H_2SO_4/H_3PO_4$ and $H_2SO_4/H_3PO_4/H_2O_2$ mixture was mostly anatase type. All $TiO_2$ films prepared by anodic oxidation exhibited photocatalytic properties. The photocatalytic degradation of aniline blue was first order reaction with similar rate constants at all oxidative conditions examined in this work.

  • PDF

Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I (염소계 화합물(TCE, PCE)로 오염된 토양 및 지하수 처리를 위한 실용적 고도산화처리시스템 개발 (I))

  • Sohn, Seok-Gyu;Lee, Jong-Yeol;Jung, Jae-Sung;Lee, Hong-Kyun;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.105-114
    • /
    • 2007
  • The most advanced oxidation processes (AOPs) are based on reactivity of strong and non-selective oxidants such as hydroxyl radical (${\cdot}OH$). Decomposition of typical DNAPL chlorinated compounds (TCE, PCE) using various advanced oxidation processes ($UV/Fe^{3+}$-chelating agent/$H_2O_2$ process, $UV/H_2O_2$ process) was approached to develop appropriate methods treating chlorinated compound (TCE, PCE) for further field application. $UV/H_2O_2$ oxidation system was most efficient for degrading TCE and PCE at neutral pH and the system could remove 99.92% of TCE after 150 min reaction time at pH 6($[H_2O_2]$ = 147 mM, UVdose = 17.4 kwh/L) and degrade 99.99% of PCE within 120 min ($[H_2O_2]$ = 29.4 mM, UVdose = 52.2 kwh/L). Whereas, $UV/Fe^{3+}$-chelating agent/$H_2O_2$ system removed TCE and PCE ca. > 90% (UVdose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) and 98% after 6hrs (UVdose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM), respectively. We improved the reproduction system with addition of UV light to modified Fenton reaction by increasing reduction rate of $Fe^{3+}$ to $Fe^{2+}$. We expect that the system save the treatment time and improve the removal efficiencies. Moreover, we expect the activity of low molecular organic compounds such as acetate or oxalate be effective for maintaining pH condition as neutral. This oxidation system could be an economical, environmental friendly, and practical treatment process since the organic compounds and iron minerals exist in nature soil conditions.

UV-OXIDATIVE TREATMENT OF BIO-REFRACTORY ORGANIC HALOGENS IN LEACHATE: Comparison Between UV/O3, UV/H2O2, and UV/H2O2/O3 Processes

  • Qureshi, Tahir Imran;Kim, Young-Ju
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.84-90
    • /
    • 2006
  • UV-catalytic oxidation technique was applied for the treatment of bio-refractory character of the leachate, which is generally present in the form of adsorbable organic halogens (AOX). Destruction of AOX was likely to be governed by pH adjustment, quantitative measurement of oxidants, and the selection of oxidation model type. Peroxide induced degradation ($UV/H_2O_2$) facilitated the chemical oxidation of organic halides in acidic medium, however, the system showed least AOX removal efficiency than the other two systems. Increased dosage of hydrogen peroxide (from 0.5 time to 1.0 time concentration) even did not contribute to a significant increase in the removal rate of AOX. In ozone induced degradation system ($UV/O_3$), alkaline medium (pH 10) favored the removal of AOX and the removal rate was found 11% higher than the rate at pH 3. Since efficiency of the $UV/O_3$ increases with the increase of pH, therefore, more OH-radicals were available for the destruction of organic halides. UV-light with the combination of both ozone and hydrogen peroxide ($UV/H_2O_2$ 0.5 time/$O_3$ 25 mg/min) showed the highest removal rate of AOX and the removal efficiency was found 26% higher than the removal efficiency of $UV/O_3$. The system $UV/H2O_2/O_3$ got the economic preference over the other two systems since lower dose of hydrogen peroxide and relatively shorter reaction time were found enough to get the highest AOX removal rate.

A Study for Oxidation Reaction of Alcohols with Cr (Ⅵ)-Isoquinoline Compound (Ⅰ) (Cr (Ⅵ)-Isoquinoline 화합물에 의한 알코올들의 산화반응에 관한 연구 (Ⅰ))

  • Yang, Jeong Seong;Park, Yeong Jo;Baek, Hyeong Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.534-538
    • /
    • 1990
  • Chromium(Ⅵ) compound, [$C_9H_7$NH]$_2Cr_2O_7$ has been prepared by the reaction of isoquinoline with chromium trioxide under the presence of water. [$C_9H_7$NH]$_2Cr_2O_7$ is nonhydroscopic and dissolved in water very well. Structure of [$C_9H_7$NH]$_2Cr_2O_7$ is identified by FTIR spectra and elemental analysis data. The ability of [$C_9H_7$NH]$_2Cr_2O_7$ for the oxidation of alcohols were examined in methylene chloride. [$C_9H_7$NH]$_2Cr_2O_7$ was found as efficient oxidizing agent for the conversion of allyl, primary and secondary alcohols to the corresponding aldehydes or ketones.

  • PDF

An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts (백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperature (망간 산화물 촉매상에서 일산화탄소의 산화반응 : 소성온도의 영향)

  • Park, Jung-Hyun;Kim, Yun-Jung;Cho, Kyung-Ho;Kim, Eui-Sik;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • [ $MnO_2$ ]catalysts were prepared by precipitation method using potassium manganate and manganese acetate. The effect of calcination temperatures of $MnO_2$ catalysts for CO oxidation has been studied and their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$ sorption, temperature programmed reduction of $H_2$ ($H_2-TPR$), and temperature programmed desorption of CO (CO-TPD) techniques. $MnO_2$ calcined at $300^{\circ}C$ catalyst has a large surface area $181m^2/g$ having a narrow pore size distribution at 9 nm. The results of XRD and $H_2-TPR$ showed that the catalysts calcined at different temperatures showed mixed oxidation states of Mn such as $Mn^{4+}$ and $Mn^{3+}$. CO-TPD showed that the quantity of $CO_2$ desorbed was decreased with increasing the calcination temperatures. The catalytic activity over the catalyst calcined at $300^{\circ}C$ exhibited the highest conversion reaching to 100% at $200^{\circ}C$. $H_2O$ vapor showed an inhibiting effect on the efficiency of the catalyst because of co-adsorption with CO on the active sites of manganese oxide catalysts and the initial catalytic activity of CO oxidation could be regenerated by removing $H_2O$ vapor in the reactants.

Destruction of Acetic Acid Using Various Combinations of Oxidants by an Advanced Oxidation Processes (다양한 산화반응을 조합한 고급산화공정의 아세트산 분해에 관한 연구)

  • Kwon, Tae Ouk;Park, Bo Bae;Moon, Jang Soo;Moon, Il Shik
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.314-319
    • /
    • 2007
  • The destruction of synthetic acetic acid wastewater was carried out using UV, $O_3$, $H_2O_2$, $Fe^{2+}$ oxidants in various combinations by the advanced oxidation processes. $UV/H_2O_2$, $UV/H_2O_2/Fe^{2+}$, $O_3$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested. $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes shows the most effective destruction efficiency at low pH (3.5) condition of wastewater, but $UV/H_2O_2$ and $O_3$ processes were observed less than 20%. Destruction efficiency was gradually increased with the reaction time in the $O_3/H_2O_2$ and $UV/O_3/H_2O_2$ processes, in case of the $UV/H_2O_2/Fe^{2+}$ and $UV/O_3/H_2O_2/Fe^{2+}$ processes shows rapid increasing of destruction efficiency within 90 min, then slightly decreasing with time. The destruction efficiencies of $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$ and $UV/O_3/H_2O_2/Fe^{2+}$ processes were observed 55, 66, 66 and 64%, respectively.