• Title/Summary/Keyword: Oxidation ditch

Search Result 13, Processing Time 0.018 seconds

A Study on the Treatment of Nutrients and Organic Carbon in Wastewater through Spatial Separation and Internal Recycling in a Modified Oxidation Ditch (격벽에 의한 조분리와 내부반송을 이용한 산화구 시설의 고도처리개선에 관한 연구)

  • Lee, Young-Shin;Oh, Dae-Min
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • This study was performed to assess the removal efficiency on nitrogen, phosphorus and organic carbon in wastewater by spatial separation and internal recycling in a modified oxidation ditch process (modified OD). The performances of the modified OD were evaluated via laboratory-scale experiments. The process was operated at hydraulic retention times of 6-48 hours and solid retention times of 17-38 days. We found that organic carbon removal efficiency increased after the modified OD operation period. T-N removal efficiency remained stable; average T-N concentration of effluent was 8.02 mg/l after modified OD operation. In contrast, T-P concentration of effluent was over 1 mg/l. Nitrogen and phosphorus removal efficiency of modified OD at HRT 12 hr were 83.1% and 74.1%, respectively. Also, maximum efficiency was found at SRTs from 20 to 30 days. T-N removal efficiency was 83.1% at a C/N ratio from 3.0 to 3.5. However, T-N removal efficiency decreased at C/N ratios over 3.5. Also, T-P removal efficiency increased with HRT at C/P ratios in the same condition. Maximum efficiency was 74.1% at a C/P ratio from 25 to 28. T-N removal efficiency was 79.2% and T-P removal efficiency was 65.3% after M4 mode operation (added to the internal recycle line connected to the anoxic reactor). The modified OD with spatial separation and internal recycling developed in this study is, therefore, believed to be an improvement for solving problems in the nutrient removal technologies.

Performance Evaluation of Advanced Municipal Wastewater Tretment by Phased Isolation Intrachannel Clarifier Ditch (침전지내장형 상분리 산화구공정에 의한 하수 고도처리특성 평가)

  • Hong, Ki-Ho;Chang, Duk;Han, Sang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.563-570
    • /
    • 2004
  • Phased isolation intrachannel clarifier ditch process developed in this study is an enhanced biological nutrient removal process employing two ditches with intrachannel clarifiers. Bench-scale phased isolation ditch process was used to evaluate the system performance on municipal wastewater and detailed assessment of internal behavior in a ditch and each reactions. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31 days, and cycle times of 4hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 73~78%, and 65~90%, respectively. The internal behavior were well matched on each reactions such as nitrification, denitrification, and phosphorus release and uptake. As the SRT became longer, TN removal increased gradually, whereas TP removal decreased contrarily. However, the system was capable of producing an effluent TP concentration 1mg/L or less even at longer SRTs except the case of solids discharge by malfunction of intra-clarifier occurred by its geometrical limit. The system performance slightly decreased by hydraulic shock loading(increasing of influent flowrate and decreasing of system HRT). However, the higher system performance could be achieved again after four cycles. Thus, the system reliability could be successfully achieved short-term hydraulic shock loading that occurred in medium- and small-sized wastewater treatment plants suffering fluctuation of influent quality and flowrate during wet season.

The Removal of Organics in an Oxidation Ditch (산화구에서의 유기물 처리에 관한 연구)

  • 김건흥
    • Water for future
    • /
    • v.13 no.3
    • /
    • pp.71-76
    • /
    • 1980
  • The oxidation ditch is an efficient, low cost form of treatment of domestic and many industrial waste. It has gained rapid acceptance because of its simplicity, low cost operation, ease of operation, simple mintenance and flexibiltiy. The objective of this investigation was to measure the removal of organics in an existing dithc that does not have return sludge and which is not preceded by primary sedimentation. To accomplish this objective, samples of the wastewater influent and effluent were collected from the wastewater treatment plant of Mansfield, Texas during practical training. These samples were collected over an extended period of time to obtain samples at various treatment temperatures. Two analytical tests, COD and suspended solids, were used to monitor the operation of the plant. The results show that high removal efficiencies were obtained at high temperatures, with the efficiency decreasing as the temperature decreased to approximatedly 16$^{\circ}C$, at which point the efficienty tmeperature relationship appeared to stabilize.

  • PDF

Bacterial Community Shift during the Startup of a Full-Scale Oxidation Ditch Treating Sewage

  • Chen, Yajun;Ye, Lin;Zhao, Fuzheng;Xiao, Lin;Cheng, Shupei;Zhang, Xu-Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2017
  • The oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized, and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%-48.4%) was the most dominant bacterial phylum in the OD system, but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with genus Flavobacterium exhibited remarkable decreasing trends, whereas bacterial species belonging to the OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen, and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of the bacterial community structure and microbial ecology during the startup of a full-scale wastewater treatment bioreactor.

A Study on Model Based Optimum Design of Oxidation Ditch in Sewage Treatment (산화구 하수처리공정의 최적설계에 관한 기초연구)

  • Dho, Hyonseung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.25-34
    • /
    • 2019
  • The efficiency of sewage treatment was analyzed by statistical method based on the water quality and operation data of the sewage treatment plant applying the oxidation method. The obtained water quality data were pH, temperature, BOD, SS, T-N, ${NH_4}^+-N$, and T-P of influent and discharge water. Data analysis was performed by correlation analysis, ANOVA analysis, and cluster analysis. As a result of the statistical analysis, the influent flow rate in the sewage treatment plant was the highest in summer. The average inflow flow rate was $3.000m^3/s$. According to Box plot results, COD, and T-P concentrations of effluents were not significantly different from season to season. The Pearson correlation analysis showed strong positive correlation between BOD, COD, T-N, and T-P in influent flow. Seasonal BOD and T-N concentrations were highest in winter and COD and T-P in seasonal influences. BOD showed a strong negative correlation with the water temperature, but showed a positive correlation with other operating factors such as HRT, SRT and C/N. The higher the influent temperature, the lower the BOD concentration. Therefore, retention time was shortened and BOD treatment efficiency was lowered. It was found that T-N had a higher retention time and a higher concentration than DO concentration. On the other hand, T-P did not show a significant correlation with operating factors.

Sewage disposal system management policy in Korea (우리나라의 하수도사업현황 및 시책방향)

  • 류지영
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • We had passed through a serious water pollution with a rapid urbanization and industrialization in the 1960's. Seoul Chunggyechun Sewage Disposal System set uP in 1966 and finished in 1976, as the first sewage disposal system in Korea, had covered only 4 percentage of the sewage disposal system per capita for 10 years. Through holding the Asian Games in 1986 and the Olympic Games in 1988, we expanded the sewage disposal system so that it became increased 18 percentage of the population in 1986. Finally, we have installed about 60 sewage disposal system by 1994 for a large environmental investment which was critically caused by "Phenol Accident in Nakdong River" . Now, the sewage disposal system per capita covers 42 percentage and the activity for water quality improvement is going on rapidly. The method of sewage disposal is mainly "activated sludge process" . However, the technical ability for the sewage disposal has largely developed since 1991 so the "extended aeration process" is used in Po$\v{u}$n, Tangyang, Mun$\v{u}$i, "rotating biological contact process" in Onch$\v{u}$ng, Pukok, and "oxidation ditch process" in K$\v{o}$ch'ana.

  • PDF

Wastewater Treatment by Microorganism (미생물에 의한 발효처리)

  • ;Kunisuke Ichikawa
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1980
  • The process of biological treatment of organic wastewater is principally associated with those of self-purification in the natural water environment. The treatment system has e intensive function of stabilizing wastewater more effectively than in natural water, which is like natural water concentrated in a small space. Biological treatment of wastewater involves activated sludge and various modified process, trickling filter, rotating disk, oxidation ditch, etc. for aerobic decomposition and anaerobic processes such as anaerobic decomposition and methane fermentation. The basic characteristic of these processes is the use of mixed culture for the conversion of pollutants. This review forcuses on the various kinds of microorganisms related to each treatment processes. Kinetic analysis of the activated sludge process is discussed in order to understand the basis of control and maintenance of the biological treatment process.

  • PDF

Appropriate Sewerage Systems for Korea (우리나라 적합 하수도시설 및 관리방안)

  • 이상은
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.37-52
    • /
    • 1992
  • Since the first sewage treatment plant was constructed in 1976, the sewerage systems of Korea have been rapidly expanded. As of the end of 1991, 22 sewage treatment plants with total capacity of 5.4 million tons/day are in operation which is equivalent of 3395 total daily sewage generation. Total extension of sewer 39.534 km in 1990 which is 55% of the target extension for the year 2001. However, the most sewage treatment plants employ activated sludge process which may not be suitable for medium and/or small scale plants. The poor existing sewer systems do not effectively collect and transport sewage to adversely affect the function of sewage treatment plant. To select the appropriate treatment system, the cities are classified into 3 categories such as large and medium size inland cities, small size cities and coastal cities. Considering the criteria suggested during this study, appropriate treatment processes were selected for each category. Conventional activated sludge process and step aeration process were found to be the most appropriate for big inland cities while biological nutrient removal processes should be considered for the cities discharge the effluent to lakes or reservoirs. RBC or Oxidation Ditch process might be appropriate for the medium size cities while several processes which do not require skilled operation and maintenance were suggested for the small cities. Ocean discharge after primary treatment can be considered for some east coast cities, Appropriate methodology to rehabilitate the existing sewers and strategy to convert combined sewer system to separate sewer system were proposed. This paper also include the appropriate management system for industrial wastewater, sludge and nightsoil.

  • PDF

A Comparative Analysis of the Bacterial Growth Kinetic Parameters for Various Biological Nutrient Removal Processes (각종 질소·인 제거공정에서 도출된 미생물 성장 동역학 계수 비교 분석)

  • Lim, Se-Ho;Ko, Kwang Baik;Oh, Young-Khee
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.647-651
    • /
    • 2004
  • In this study, some of bacterial growth kinetic parameters were delineated and evaluated for the biological nutrient removal processes such as the $A^2/O$, 4stage-BNR, Intermittent Cycle Extended Aeration System(ICEAS) and Intermittently Aerated Cylindrical Oxidation Ditch(IACOD) processes. $Y_H$ values for the ICEAS process ranged from 0.71 to 0.74, and were higher than those for the other processes. It seems to indicated that organic carbons uptaked by microorganism were more used up for cell synthesis rather than for energy components in the ICEAS process. $b_H$ for the ICEAS and IACOD processes were lower than those for $A^2/O$ and 4stage-BNR processes. The $\mu_{max{\cdot}A}$ for the ICEAS was higher than those for the other processes, which indicated that desirable operating conditions for nitrifying bacteria's growth were established.