• Title/Summary/Keyword: Oxidation Resistance

Search Result 835, Processing Time 0.023 seconds

A Study on the Manufacture of the Artificial Cardiac Tissue Valve (생체판의 제작 및 실험)

  • Kim, Hyoung-Mook;Song, Yo-Jun;Sohn, Kwang-Hyun
    • Journal of Chest Surgery
    • /
    • v.12 no.4
    • /
    • pp.383-394
    • /
    • 1979
  • Treatment of valvular heart disease with valve replacement has been one of the most popular procedures in cardiac surgery recently. Although, first effort was directed toward the prosthetic valve, it soon became popular that bioprosthesis, the valvular xenograft, was prefered in the majority cases. Valvular xenograft has some superiority to the artificial prosthetic valve in some points of thromboembolism and hemolytic anemia, and it also has some inferiority of durability, immunologic reaction and resistance to Infection. Tremendous efforts were made to cover the inferiority with several methods of collection, preservation, and valve mounting of the porcine valve or pericardium of the calf, and also with surgical technique of the valvular xenograft replacement. Auther has collected 320 porcine aortic valves immediately after slaughter, and aortic cusps were coapted with cotton balls in the Valsalva sinuses to protect valve deformity after immersion in the Hanks' solution, and oxidation, cross-linking and reduction procedures were completed after the proposal of Carpentier in 1972. Well preserved aortic valves were suture mounted in the hand-made tissue valve frame of 19, 21, and 23 mm J.d., and also in the prosthetic vascular segment of 19 mm Ld. with 4-0 nylon sutures after careful trimming of the aortic valves. Completed valves were evaluated with bacteriologic culture, pressure tolerance test with tolerane gauge, valve durability test in the saline glycerine mixed solution with tolerance test machine in the speed of 300 rpm, and again with pathologic changes to obtain following results: 1. Bacteriologic culture of the valve tissue in five different preservation method for two weeks revealed excellent and satisfactory result in view of sterilization including 0.65% glutaraldehyde preservation group for one week bacteriologic culture except one tissue with Citobacter freundii in 75% ethanol preserved group. 2. Pressure tolerance test was done with an apparatus composed of V-connected manometer and pressure applicator. Tolerable limit of pressure was recorded when central leaking jet of saline was observed. Average pressure tolerated in each group was 168 mmHg in glutaraldehyde, 128 mmHg in formaldehyde, 92 mmHg in Dakin's solution, 48 mmHg in ethylene oxide gas, and 26 mmHg in ethanol preserved group in relation to the control group of Ringer's 90 mmHg respectively. 3. Prolonged durability test was performed in the group of frame mounted xenograft tissue valve with 300 up-and-down motion tolerance test machine/min. There were no specific valve deformity or wearing in both 19, 21, and 23 mm valves at the end of 3 months (actually 15 months), and another 3 months durability test revealed minimal valve leakage during pressure tolerance test due to contraction deformity of the non-coronary cusp at the end of 6 months (actually 30 months) in the largest 23 mm group. 4. Histopathologic observation was focussed in three view points, endothelial cell lining, collagen and elastic fiber destructions in each preservation methods and long durable valvular tolerance test group. Endothel ial cell lining and collagen fiber were well preserved in the glutaraldehyde and formaldehyde treated group with minimal destruction of elastic fiber. In long durable tolerance test group revealed complete destruction of the endothelial cell lining with minimal destruction of the collagen and elastic fiber in 3 month and 6 month group in relation to the time and severity. In conclusion, porcine xenograft treated after the proposal of Carpentier in 1972 and preserved in the glutaraldehyde solution was the best method of collection, preservation and valve mounting. Pressure tolerance and valve motion tolerance test, also, revealed most satisfactory results in the glutaraldehyde preserved group.

  • PDF

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber (환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가)

  • Yu, Jae-Cheul;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.

The Photocatalytic Degradation of Humic Acid by TiO2 Sol-Gel Coating -Characterization of Humic Acid in the Chemical Oxidation Treatment (II)- (TiO2 졸-겔 코팅 막에 의한 Humic Acid의 광분해 -화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구 (II)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.765-773
    • /
    • 2000
  • The degradation of humic acid using $TiO_2$ coatings was studied, $TiO_2$ coatings were prepared by dip-coating method. Sol solutions for coating were prepared by mixing the gel, which can be produced by the reaction of $TiOCl_2$ and $NH_4OH$ solution, and hydrogen peroxide solution, and hydrolysis of titanium tetraisopropoxide (TTIP). It was shown from XRD that coatings from sol aged at $100^{\circ}C$ for 18h with titanium peroxo solution were crystallized to anatase in the range of temperatures of $25^{\circ}C$ to $500^{\circ}C$. In contrast, those coated from TTIP were crystallized to anatase at temperature above $400^{\circ}C$. So the sols originated from $TiCl_4$ can be applied for not only on the heat-resistance substrates but on the plastic substrates. Thickness and the quality of the films were dependent on the withdrawing speed, the concentration of sol, and the number of coating. The films showed various interference colors depending on the thickness of them. In the case that the films coated 2 times at withdrawing speed of 2.5cm per minute by 0.2M sol, the films had a transparent light blue color with thickness of around 50nm. It was known from the result of photo-degradation by $TiO_2$ coatings using humic acid that the removal efficiency of $COD_{cr}$ was over 85% after illumination of $UV/H_2O_2$ for 40min. and that of UV/VIS absorbable materials was over 95%.

  • PDF

Effects of conditions for anodization and cyclic precalcification treatments on surface characteristics and bioactivity (양극산화와 석회화 순환처리 조건이 타이타늄 박판의 표면특성 및 생체활성에 미치는 영향)

  • Jang, Yong-Seok;Lee, Kang-Gyu;Jeon, Woo-Yong;Han, A-Lum;Lim, Chung-Ha;Lee, Min-Ho;Bae, Tae-Sung
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.243-256
    • /
    • 2018
  • The purpose of this study was to investigate the effects of the anodization and cyclic calcification treatment on the surface characteristic and bioactivity of the titanium thin sheet in order to obtain basic data for the production of bioactive titanium membrane. A $30{\times}20{\times}0.08mm$ titanium sheets were prepared, and then they were pickled for 10 seconds in the solution which was mixed with $HNO_3:HF:H_2O$ in a ratio of 12: 7: 81. The $TiO_2$ nanotube layer was formed to increase the specific surface area of the titanium, and then the cyclic calcification treatment was performed to induce precipitation of hydroxiapatite by improvement of the bioactivity. The corrosion resistance test, wettability test and immersion test in simulated body solution were conducted to investigate the effect of these surface treatments. The nanotubes formed by the anodization treatment have a dense structure in which small diameter tubes are formed between relatively large diameter tubes, and their inside was hollow and the outer walls were coupled to each other. The hydroxyapatite precipitates were well combined on the nanotubes by the penetration into the nanotube layer by successive cyclic calcification treatment, and the precipitation of hydroxyapatite tended to increase proportionally after immersion in simulated body solution as the number of cycles increased. In conclusion, it was confirmed that induction of precipitation of hydroxyapatite by cyclic calcification treatment after forming the nanotube $TiO_2$ nanotube layer on the surface of the titanium membrane can contribute to improvement of bioactivity.

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.