• Title/Summary/Keyword: Oxadiazole

Search Result 81, Processing Time 0.023 seconds

Effect of Hole-Transporting Layer and Solvent in Solution Processed Highly-Efficient Small Molecule Organic Light-Emitting Diodes

  • Jo, Min-Jun;Hwang, Won-Tae;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.250-250
    • /
    • 2012
  • Organic light-emitting diodes (OLED) and polymer light emitting diodes (PLED) have been regarded as the candidate for the next generation light source and flat panel display. Currently, the most common OLED industrial fabrication technology used in producing real products utilizes a fine shadow mask during the thermal evaporation of small molecule materials. However, due to high potential including low cost, easy process and scalability, various researches about solution process are progressed. Since polymer has some disadvantages such as short lifetime and difficulty of purifying, small molecule OLED (SMOLED) can be a good alternative. In this work, we have demonstrated high efficient solution-processed OLED with small molecule. We use CBP (4,4'-N,N'-dicarbazolebiphenyl) as a host doped with green dye (Ir(ppy)3 (fac-tris(2-phenyl pyridine) iridium)). PBD (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) and TPD (N,N'diphenyl-N,N'-Bis (3-methylphenyl)-[1,1-biphenyl]-4,4'-diamine) are employed as an electron transport material and a hole transport material. And TPBi (2,2',2''-(1,3,5-phenylene) tris (1-phenyl-1H-benzimidazole)) is used as an hole blocking layer for proper hole and electron balance. With adding evaporated TPBi layer, the current efficiency was very improved. Among various parameters, we observed the property of OLED device by changing the thickness of hole transporting layer and solvent which can dissolve organic material. We could make small molecule OLED device with finding proper conditions.

  • PDF

Effect of Acorus Gramineus on the Relaxation of Corpus Cavernosum Smooth Muscle (석창포에 의한 발기부전 개선 효과)

  • Li, Xiang;Kim, Ho-Tae;Lee, Jae-Yun;Lee, Yun-Jung;Shin, Hong-Kyun;Kang, Dae-Gill;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.863-869
    • /
    • 2011
  • The aim of the present study is to investigate whether an ethanol extract of Acorus gramineus Soland (EAG) augments penile erection in vitro and in vivo experiment. Preconstructed with phenylephrine (PE) in isolated endothelium-intact rabbit corpus cavernosum, EAG relaxed penile smooth muscle in a dose-dependent manner, which was inhibited by pretreatment with NG-nitro-L-argininemethylester (L-NAME), a nitricoxide synthase inhibitor, and 1H-[1,2,4]-oxadiazole-[4,3-${\alpha}$]-quinoxalin-1-one (ODQ), a soluble guanylylcyclase (sGC) inhibitor, respectively. EAG-induced relaxation was significantly attenuated by pretreatment with tetraethylammonium (TEA), a nonselective $K^+$ channel blocker. EAG increased cGMP levels of the rabbit corpus cavernosum in a concentration-dependent manner without changes in cAMP levels. In addition, EAG caused increase of peak intracavernous pressure (ICP), ICP/MAP ratio and area under the carve (AUC) in SD rats. Taken together, these results suggest that EAG augments penile erection via NO-cGMP system and $K^+$ channels in corpus cavernosum.

Mechanism for the Vascular Relaxation Induced by Butanol Extract of Agrimonia pilosa (선학초 부탄올 추출물의 혈관 이완 효과의 기전에 대한 연구)

  • Hua, Cao-Li;Lee, Jun-Kyung;Cho, Kuk-Hyun;Kwon, Tae-Oh;Kwon, Ji-Woong;Kim, Jin-Sook;Sohn, Eun-Jin;Lee, Ho-Sub;Kang, Dae-Gill
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.2 s.145
    • /
    • pp.67-73
    • /
    • 2006
  • The butanol extracts of Agrimonia pilosa (BAP) induced dose-dependent vascular relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with $N^G$-nitro-L-arginine methyl ester (L-NAME) and 1H-[1,2,4]-oxadiazole-[$4,3-{\alpha}$]-quinoxalin-1-one(ODQ) inhibited the relaxation induced by BAP. BAP-induced vascular relaxation was also markedly attenuated by addition of verapamiI, while the relaxant effect of BAP was not blocked by indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolo. In addition, incubation of endothelium-intact aortic rings with BAP increased the vascular production of cGMP. These results suggest that BAP relaxes vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling pathway, which may be causally related with L-type $Ca^{2+}$ channels.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Effect of Lophatherum gracile on the mechanism of vasorelaxation in thoracic aorta (담죽엽 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Li, Xiang;Lee, Yun-Jeong;Seo, Hwan-Ho;Cho, Nam-Geun;Kang, Dae-Gill;Lee, Ho-Sub
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.175-186
    • /
    • 2009
  • The vasorelaxant effect of an extract of Lophatherum gracile Brongn (ELB) and its possible action mechanism were ascertained in aortic tissues isolated from rats. ELB relaxed endothelium-intact thoracic aorta in a dose-dependent manner. However, the induced vascular relaxation was abolished by removal in endothelium of the thoracic aorta. Pretreatment of endothelium-intact vascular tissues with $N^G$-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-$\alpha$]-quinoxalin-1-one (ODQ) significantly inhibited vascular relaxation induced by ELB. Moreover, ELB significantly increased cGMP production in aortic tissues, which was blocked by pretreatment with L-NAME or ODQ. The vasorelaxant effect of ELB was attenuated by tetraethylammonium (TEA), and glibenclamide. ELB-induced vasorelaxation was not blocked by atropine, propranolol, indomethacin, verapamil, and diltiazem. Taken together, the present study demonstrates that ELB dilates vascular smooth muscle via an endothelium-dependent NO-cGMP signaling pathway, which may be at least in part related with the function of $K^+$ channels.

  • PDF

EFFECT OF TEMPERATURE ON FLUORESCENCE QUENCHING BY STEADY STATE AND TRANSIENT METHODS IN SOME ORGANIC LIQUID SCINTILLATORS

  • Giraddi, T.P.;Kadadevarmath, J.S.;Chikkur, G.C.;Rath, M.C.;Mukherjee, T.
    • Journal of Photoscience
    • /
    • v.4 no.3
    • /
    • pp.97-103
    • /
    • 1997
  • The effect of temperature on the fluorescence quenching of 2-(4-Methoxyphenyl)-5-(1-naphthyl)-1,3,4-oxadiazole (MPNO1), 2-(4-Methoxyphenyl)-5-(2-naphthyl)-1,3,4-oxadiazote(MPNO2), by aniline, and 2-Phenylindole (2-PI) by CCk, in toluene by steady state method and in benzene by time-resolved method have been carried out in the temperature range 30 - 70$\circ$C. The Stem-Volmer (S-V) plots, I$_0$/I against quencher concentration [Q] at different temperanares show positive deviations. The fluorescence lifetimes determined at different temperatures show no systematic variations and the variations being within the experimental error, the average values of lifetimes $ $\tau$ (t) are taken for further calculations. Rate constants such as Stem-Volmer quenching constants K$_sv}$, quenching rate parameters k$_q$ and k'$_q$, static quenching constant V and kinetic distance r are determined using the modified Stem-Volmer equation and sphere of action static quenching model. In order to see whether the reactions are diffusion limited, equations k$_q$ = e$^{-Eq/RT}$ and k'$_q$ = e$^{-Eq/RT}$ are used to determine the values of E$_q$ and E'$_q$, the activation energies for collisional quenching and the values of E$_q$ are 14.53. 17.28 and 16.20 kJ mole$^{-1}$ for MPNO1, MPNO2 and 2-PI respectively and the values of E'$_q$ are 14.62 and 17.73 for MPNO1 and MPNO2 respectively. From the magnitudes of various quantities it has been concluded that the reactions are diffusion limited and the observed positive deviations in the S-V plot are due to static and dynamic quenching.

  • PDF

Study on the Vasorelaxant Mechanism of the Butanol Extract of Euonymus alatus (귀전우(鬼箭羽) 부탄올 추출물의 혈관이완 기전에 대한 연구)

  • Li, Xiang;Kang, Dae-Gill;Lee, Jun-Kyoung;Kim, Seung-Ju;Choi, Deok-Ho;Lee, Kye-Bok;Cui, Hao-Zhen;Yeom, Ki-Bok;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.148-154
    • /
    • 2008
  • The butanol extract of Euonymus alatus (BEA) induced dose-dependent relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pre-treatment of the endothelium-intact aortic tissues with $N^G-nitro-L-arginine methylester$ (L-NAME), and 1 H-[1,2,4]-oxadiazole- [$4,3-{\alpha}$]-quinoxalin-1-one (ODQ) inhibited the relaxation induced by BEA, respectively. BEA-induced vascular relaxation was not blocked by glibenclamide, tetraethylammonium (TEA), indomethacin, atropine, propranolol, verapamil, and diltiazem, respectively. Moreover, BEA inhibits phenylephrine-induced vascular constriction in a dose-dependent manner. These results suggest that BEA relaxes vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling.

Study on the Mechanism of Vascular Relaxation Induced by Cortex Caryphylli (정향피 추출물의 혈관 이완효과 및 작용기전에 대한 연구)

  • Song, Chul-Min;Shin, Sun-Ho;Jung, Hyun-Ae;Lee, Jun-Kyoung;Cao, Li-Hua;Kang, Dae-Gil;Lee, Ho-Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1166-1173
    • /
    • 2006
  • The aqueous extracts of Cortex Caryophylli (AEC) induced dose-dependent relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with N$^G$_nitro-L-arginine methyl ester (L-NAME) or 1 H-[1,2,4]-oxadiazole-[4,3-${\alpha}$l-quinoxalin-1-one (ODQ) inhibited the relaxation induced by AEC. AEC-induced vascular relaxations were also markedly attenuated by addition of verapamil, diltiazem and glibenclamide, tetraethylammonium (TEA), respectively, while the relaxation effect of AEC was not blocked by indomethacin, atropine, or propranolol. Moreover, incubation of endothelium-intact aortic rings with AEC increased the production of cGMP. These results suggest that AEC dilates vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling, which seems to be causally related with L-type Ca$^{2+}$ and K$^+$ channels.

Vascular Relaxation Induced by the Water Soluble Fraction of the Seeds from Oenothera Odorata (월견자 물 분획층을 이용한 혈관이완 기전에 관한 연구)

  • Kim, Hye Yoom;Lee, Yun Jung;Yoon, Jung Joo;Kho, Min Chol;Han, Byung Hyuk;Choi, Eun Sik;Park, Ji Hun;Kang, Dae Gill;Lee, Ho Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.6
    • /
    • pp.492-497
    • /
    • 2015
  • In the present study, vasorelaxant effect of the extract of seeds of Oenothera odorata (SOO) and its possible mechanism responsible for this effect were examined in vascular tissues isolated from rats. Changes in vascular tension, 3',5'-cyclic monophosphate (cGMP) levels were measured in thoracic aorta rings from rats. Methanol extract of seeds of Oenothera odorata relaxed endothelium-intact thoracic aorta in a dose-dependent manner. A dose-dependent vascular relaxation was also revealed by treatment of ethylacetate, n-butanol, and H2O (aqua extract of seeds of Oenothera odorata , ASOO) extracts partitioned from methanol, but not by hexane extract. However, the vascular relaxation induced by ASOO were abolished by removal of endothelium of aortic tissues. Pretreatment of the endothelium-intact vascular tissues with NG-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-α]-quinoxalin-1- one (ODQ) significantly inhibited vascular relaxation induced by ASOO. Moreover, incubation of endothelium-intact aortic rings with ASOO increased the production of cGMP. However, ASOO-induced increases in cGMP production were blocked by pretreatment with L-NAME or ODQ. The vasorelaxant effect of ASOO was attenuated by tetraethylammonium (TEA), 4-aminopyridine, and glibenclamide attenuated. On the other hand, the ASOO-induced vasorelaxation was not blocked by verapamil, and diltiazem. Taken together, the present study demonstrates that ASOO dilate vascular smooth muscle via endothelium-dependent NO-cGMP signaling pathway, which may be closely related with the function of K+ channels.

Study on the Mechanism of Vascular Relaxation of Methanol Extract of Rose multiflora Radix (장미근(薔薇根) 메탄올 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Dae-Joong;Jo, Nam-Geun;Lee, Jun-Kyoung;Cao, Li-Hua;Lee, Hyuck;An, Jung-Seok;Um, Jae-Yeon;Joe, Gye-One;Na, Han-Il;Kyung, Eun-Ho;Kang, Dae-Gil;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.408-413
    • /
    • 2007
  • Vascular tone plays an important role in the regulation of blood pressure. In the present study, the methanol extract of Rosae multiflora Radix (MRM) induced dose-dependent relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with $N^G$-nitro-L-arginine methly ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-${\alpha}$]-quinoxalin-1-one (ODQ) inhibited the relaxation induced by MRM, respectively. But, the relaxation effect of MRM was not blocked by indomethacine, glibenclamide, tetraethylammonium (TEA), verapamil, diltiazem, atropine, and propranolol, respectively. Moreover, incubation of endothelium-intact aortic rings with MRM increased the production of cGMP. Taken together, the present results suggest that MRM relaxes vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling. These results would be useful for further study to MRM on animal models with cardiovascular diseases.