• Title/Summary/Keyword: Overturning Safety

검색결과 69건 처리시간 0.032초

공력에 의한 HEMU-400x 고속열차의 주행안정성 평가 (Stability Evaluation on Aerodynamics of High Speed Railway Train)

  • 최지훈;박태원;심경석;곽민호;이동호
    • 한국소음진동공학회논문집
    • /
    • 제22권3호
    • /
    • pp.244-252
    • /
    • 2012
  • Recently, the speed of a train has been increased. So the trains are being exposed to wind more severely than before. Because of the operation of high speed trains and lightweight of the train, risks of train derailment have being increased. In this study, aerodynamic effects of a newly designed high speed train, HEMU-400x, are evaluated. For aerodynamic effect evaluation, analysis method is selected by examining the safety standards for high speed train. The condition of aerodynamic effects is selected by adverse effect conditions. In order to calculate $C_s$ coefficients, numerical analysis is conducted. Using $C_s$ coefficients, the side force is calculated. Through dynamics analysis, derailment and wheel unloading are obtained. Using these results, derailment evaluation is performed.

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

캐빈 동특성에 대한 형상변수의 기여도 해석 (Effects of Configurational Parameters on the Dynamic Characteristics of a Cabin)

  • 안태길;안세환;박민수;소병업;김중호
    • 자동차안전학회지
    • /
    • 제6권2호
    • /
    • pp.18-22
    • /
    • 2014
  • A new concept tractor is developed, which can conduct multi-functional complex tasks such as excavating and working with attached various equipments. A cabin of the agricultural tractor is designed to protect the driver from vibration transmitted due to the irregular ground and overturning of the tractor. In this paper, the dynamic characteristic of the cabin is identified through finite element analysis and effects of configurational parameters are investigated to insure the dynamic stiffness of the cabin.

차량탑재형 고소작업대의 재해분석을 통한 취약 구조부의 안전성 향상 방안에 관한 연구 (A Study on the Safety Improvement of Structural Weakness Using Accident Analysis for Vehicle-Mounted MEWP)

  • 유용태;서수은;유희재;강경식
    • 대한안전경영과학회지
    • /
    • 제19권1호
    • /
    • pp.15-25
    • /
    • 2017
  • The findings were summarized as follows. The safety check by manufacturer showed that 6 of 13 companies are over the average occurrence of defects. It was expected that there would be a difference between manufacturing technology capability and production system of each manufacturer. Consequently, manufacturers should institutionally improve and strengthen certification items for the upward standardization of safety certification before factory. Second, the safety check by year showed that the results of this study accord with those of previous studies on defect time. Consequently, manufacturers should classify the 3-year-old equipment for vehicle-mounted MEWP into a special check subject to do a nondestructive test according to proven results, and also reflect the test in a safety test system to do regular preventive activities of equipment defects. Third, the safety check by part showed that the boom and outrigger parts of vehicle-mounted MEWP have the most defects. Stress concentration resulted in defects as the boom part was most frequently operated in the structural parts for a real work. To prevent this, it is suitable to improve the hardness of boom materials. The outrigger part needs improvement in safety devices with materials. As an outrigger supports the overturning moment of equipment, it is most affected by its load based on the operating radius, resulting in fatigue crack.

임도비탈면의 복원을 위한 식생기반재 돌망태의 안정성 분석 (Using Gabion Systems with Vegetation Base Materials on Stability Analysis for the Forest Road Cut-slope Rehabilitation Techniques)

  • 박재현;정용호;최형태
    • 한국환경복원기술학회지
    • /
    • 제12권2호
    • /
    • pp.106-113
    • /
    • 2009
  • In this study, stability of the new gabion system with vegetation base materials was analysed. New gabion system with vegetation base materials is a new approach which has been developed to achieve lope stabilization and revegetation of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials. Results from stability analysis are as follows. For the soil density, the angle of internal friction and unit weight of the rock fill was assumed to be $1.90g/cm^3$, $30^{\circ}$ and $2.30t/m^3$, respectively, the slope stability analysis showed that the new gabion system couldn't require any poles to fix it up, and could keep stable during both rainy and dry seasons. As the results of checks against overturning and sliding, the retaining wall with. the new gabion system could produce suitable factors of safety for overturning and sliding. Vegetation established on the surface of the new gabion systems indirectly can help to increase slope stability by prevention of surface erosion. Consequently, the new gabion system with vegetation base materials could achieve the desired effect on slope stabilization as much as existing gab ion system could do, and could promote rapid establishment of vegetation on cut-slopes.

농용트랙터 보호구조물 사용실태 및 좌석벨트 편이성 평가에 관한 연구 (A Study on Improving the Tractor ROPS and Seatbelt use of Korean Farmers)

  • 김혁주;김관우;최선;김종선;김유용;김진오;김학규;권순홍
    • Journal of Biosystems Engineering
    • /
    • 제35권5호
    • /
    • pp.294-301
    • /
    • 2010
  • This study was performed to improve the utilization of the ROPS and seatbelt of tractors in Korea. We surveyed the ROPS and seatbelt use and the tractor related accidents through the personal interviews for 141 farmers. And comfort test for tractor seatbelts is done for 4 different subjects by measuring the body pressure distribution. The survey showed that 79.3% of the tractor accidents was overturning accidents. And, in case the tractor has ROPS and seatbelt, there was no serious injuries. With this results, we could confirm that ROPS and seatbelt is very effective devices for protecting drivers in overturning accidents. But, in case farmers didn't wear seatbelt, there was some fatal injuries. This shows the importance of the seatbelt use in working and driving tractors. Therefore, we tested the comfort of the tractor seatbelt for 4 different subjects operating the pedal in tractor seat simulator and in the tractor running on various roads. From the results of the static test in the Lab, it was shown that more the seatbelt anchorage point is far form SIP point, more the body pressure of the belly became higher, and more the subjects feel uncomfortable. Not only in the static test in the simulator, but also in the dynamic test in riding tractors, it was shown that non retractable seatbelt was more uncomfortable than retractable seatbelt. According to this study, we concluded that we need to promote the utilization of the ROPS and seatbelt use. And, the non retractable seatbelt need to be replaced by retractable seatbelt. Also, we recommend that the seatbelt anchorage position should to be in the seatbelt anchorage area of the ISO 3776 standard.

수치해석을 이용한 기존 피해 보강토 옹벽의 보강에 관한 사례 연구 (A Case Study on the Reinforcement of Existing Damaged Geogrid Reinforced Soil Wall Using Numerical Analyses)

  • 원명수;란쿠얀크리스틴;최정호;하양성
    • 한국지반신소재학회논문집
    • /
    • 제19권1호
    • /
    • pp.75-82
    • /
    • 2020
  • 보강토 옹벽이 붕괴되는 사례가 종종 발생되면서, 붕괴된 옹벽의 보강 및 복구에 대한 사회적인 관심은 날로 커지고 있으나 이에 대한 연구는 미미한 경향이 있다. 이와 같은 배경 아래, 본 연구에서는 Plaxis 2D프로그램을 이용한 일련의 수치해석을 수행하여 설계부실로 전면블록의 전도와 배면 침하 피해가 발생된 기존 보강토 옹벽을 복구할 수 있는 방안에 대한 사례연구를 수행하였다. 복구방안으로는 기존 피해 보강토 옹벽에 쏘일네일링과 보강콘크리트(RC) 전면벽체를 보강하는 방안(Case 1)과 기존 피해 보강토 옹벽을 제거하고 재시공하는 방안(Case 2)으로 검토하였다. 보강토 옹벽의 내적안정검토결과는 파단에 대해서는 Case 1이 Case 2보다 크고 인발에 대해서는 Case 2가 Case 1보다 안전율이 크게 나타났다. 수치해석에 의한 외적거동과 전단강도감소법에 의한 전체사면안정 안전율은 Case 1이 Case 2보다 안정적으로 나타났다. 본 연구에서는 보다 안정적인 외적거동을 나타내는 Case 1로 기존 피해 보강토 옹벽을 보강하도록 하였다.

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.

다중거동함수에 의한 T형 옹벽의 신뢰도 해석 (Reliability Analysis of Cantilever Retaining Wall Using Multiple Failure Modes)

  • 박춘수;송용선;김영필
    • 한국지반공학회지:지반
    • /
    • 제4권2호
    • /
    • pp.15-24
    • /
    • 1988
  • 확정론적 방법으로 안정조건을 만족하는 T형옹벽을 대상으로 지지력, 활동, 전도의 단일파괴류 형에 대해 설계변수를 통계적 독립이고 정규분포로 가정하여 AFOSM 방법으로 신뢰도 해석을하였다. 이를 바탕으로 각 파양모드 사이의 상관성을 고려한 구조물 전체적인 신뢰도는 신뢰지수로 2.05 이었다. 그러므로, 확정론적 설계법에 의해 안전상태로 판단된다 할지라도 신뢰도개념으로는 일반적인 목표신뢰지수(Target reliability index) 3보다 훨씬 낮기 때문에 안정상태로 판단하기는 곤란하다.

  • PDF

15층 철근콘크리트 건물에 설치된 통신설비 면진장치 동적 거동에 대한 실험적 연구 (An Experimental Study on the Dynamic Behavior of the Seismic Isolator for Telecommunication Equipment Installed in a 15-Story Reinforced Concrete Building)

  • 최형석;정동혁;서영득;백은림
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.241-249
    • /
    • 2021
  • Communication facilities play an essential role in disaster situations. Therefore, communication facilities need to have structural and functional safety during and after earthquakes. Recently, technology for partial seismic isolation has been increasing to protect data facilities and communication equipment installed in buildings from earthquakes. However, excessive displacement may occur in the seismic isolator during an earthquake due to the resonance between the building and the seismic isolator having long-period characteristics, which may cause overturning and separation of the installed equipment. In this study, analytical and experimental studies were conducted to evaluate the safety of seismic isolators installed in high-rise buildings. It was confirmed that damages might occur in buildings' seismic isolator, with resonance characteristics of less than 1 Hz.