• Title/Summary/Keyword: Overturning Safety

Search Result 68, Processing Time 0.02 seconds

Evaluation of Overturning Safefy for a Tilting Train by Carbody Tilting (차체 틸팅에 따를 전복안전도 특성 평가)

  • Kim, Nam-Po;Seo, Sung-Il;Kim, Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.145-150
    • /
    • 2006
  • In this study, overturning safety for a tilting train has been evaluated. In the tilting train, the overturning safety is one of the most important factors because the carbody inclines inward a curve during curve negotiation. Dynamic analysis considering unbalanced lateral acceleration and carbody tilting has been carried out and the overturning safety for the tilting train has been evaluated according to height of CG of carbody. From these studies, the overturning safety for the tilting train under unbalanced lateral acceleration of $2m/s^2$ was superior to the conventional one at the same running speed.

A Study on the Quasi-static Overturning and Derailment Safety of Tilting Train (틸팅차량의 준 정적상태 전복 안전성과 탈선 안전성에 관한 연구)

  • Souh, Byung-Yil;Lee, Byung-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.537-545
    • /
    • 2010
  • This study presents a method to evaluate overturning safety and derailment safety of korean tilting train using kinematic analysis of four-bar linkage tilting mechanism. The safety is evaluated considering tilting vehicle body CG displacement. The design sensitivity for stable and safe maximum speed is evaluated around current korean tilting train design data. The current design shows minimum center of gravity displacement. Higher speed can be achieved with larger center of gravity displacement.

Evaluation of Overturning Stability for Preventing Safety Accidents Caused by Ladder Work in Landscape Construction and Management - For the Tripod Support Portable Ladders Used in Korea - (조경시공·관리에서 사다리 안전사고 예방을 위한 전도 안정성 평가 - 국내에서 사용되고 있는 삼각지지형 이동식 사다리를 대상으로 -)

  • Kim, Eun-Il;Kwon, Yoon-Ku;Lee, Gi-Yeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.1-12
    • /
    • 2023
  • This study evaluated the overturning stability of portable tripod ladders used for high-altitude work such as tree management and pruning work in landscaping construction and management. Portable tripod ladders, which are included in general mobile or portable ladders frequently used in industrial sites, are supported in a triangular support structure, not a 4-point support like common A-type Ladders. In addition, since the working height is more than twice that of a mobile or portable ladder, the possibility of an overturning accident that threatens the safety of workers with a fall accident is high. Therefore, based on the overturning stability test specified in ANSI-ASC A14.7 and EN 131-Part 7, which are related standards for about 130 types of portable tripod ladders sold and used in Korea. An equation to calculate each moment according to working height was derived. Then, each calculated moment was compared to evaluate the safety factor for overturning and stability. As a result of the overturning stability evaluation according to each standard, when the provisions of EN 131-Part 7 were applied, portable tripod ladders with 8 steps in the rear direction and 6 steps or more in the side direction were evaluated as unstable against overturning, but according to ANSI-ASC A14.7 regulations. It was evaluated that the stability against overturning was secured in all directions and number of steps.

Establishing Traffic Speed Limits Standard and Accident Risk Analysis of Truck (화물차량의 사고위험도 분석 및 통행속도 제한기준 정립)

  • Kim, Jae Hyun;Hong, Ki Nam;Seo, Dong Woo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.149-157
    • /
    • 2016
  • This paper presents the traffic speed limit of heavy vehicles at each wind velocity region, which is based on their accident risk analysis under cross-wind. The variables for the accident risk analysis are overall height, overall length, intake weight, and friction coefficient of the road surface. It was confirmed from analysis results that the risk of overturning increased with higher overall height and length, and the risk of sliding decreased with higher intake weight. The risk of sliding was largest at the friction coefficient of 0.1, and the risk of overturning was lagest at friction coefficient more than 0.25. Finally, traffic speed limit was proposed by using the accident risk analysis.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads in Korea High Speed Railway. (고속철도 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-il;Yang Sin-Chu;Kim Yun-Tae;Suh Sa-Bum
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.504-509
    • /
    • 2005
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

  • PDF

An Analytical Study on Determination of Dimensions of Drystone Masonry Retaining Walls (석축의 단면결정에 대한 해석적 연구)

  • Seung-Hyun Lee
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.60-68
    • /
    • 2023
  • Purpose: In order to find out stability condition which governs design of drystone masonry retaining walls and changing patterns of installed width of blocks of the wall for each stability conditions, typical wall was assumed and designed. Method: For the purpose of this study, 10 m high drystone masonry retaining wall with general block size and soil properties were considered and dimensions of the wall were determined by applying stability conditions of sliding and overturning and the design results were compared with each other. Result: According to the design results, installed width of blocks determined by considering stability of sliding were greatly less than those determined by considering stability of overturning and these differences were not decreased noticeably even though same values of factors of safety for sliding and overturning were applied. Between the two methods of determining the installed width of blocks, it could be seen that the method of considering failure wedge of lower part of overturning parts of the wall governed the design instead of considering horizontal base of overturning parts of the wall. Conclusion: In case of considering failure wedge of lower part of overturning parts of the wall, it could be seen that the installed width of blocks increased as the inclination angle of failure wedge increased. In case of considering overturning at the lower part of the wall with certain assumed inclination angle of failure wedge, it could be seen that installed width of blocks decreased as the inclination angle of failure wedge decreased by geometric restrictions of the wall.

Evaluation of MR Safety of Breast Expander on 1.5T and 3.0T MRI (유방 조직 확장기의 1.5T와 3.0T MRI 환경 내 안정성 평가)

  • Jung, Dong-Il;Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.361-366
    • /
    • 2020
  • The purpose of this study is to evaluate the safety of the breast tissue expander implanted patients who require MRI examination. Torques were 0ml, 150 ml, 300 ml, 450 ml at 1.5 Tesla forward direction, 4, 3, 3, and 2 respectively, and 1.5 Tesla reverse direction at 4, 4, 4, 3 respectively. In the 3.0 T environment, 4 was shown in all conditions. In the overturning experiment, no overturning occurred in more than 300 ml in the 1.5Tesla environment, and most of the overturning occurred in the 3.0 Tesla environment. In terms of safety, MRI scans of patients with breast tissue expanders should be avoided at 3.0 Tesla and conditionally at 1.5 Tesla.

Numerical study of the Crosswind Safety on Korean Tilting Train Express (수치 해석 방법을 애용한 한국형 틸팅 차량의 측풍 안전성 고찰)

  • Yun S. H.;Ku Y. C.;Kim T. Y.;Ko T. H.;Lee D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.109-113
    • /
    • 2005
  • Recently, the weight of train is decreased by using the light material for improvement in energy efficiency. And the length of whole train is more increased for mass transportation of passengers and cargo. However, decrease of the weight and increase of the length of train can cause the train to be overturned or derailed by strong crosswind. In case of Korean Tilting Train eXpress (TTX), the situation can be more severe. TTX will be developed for a quasi-high speed train at 200km/h speed rate and operated on the existing tracks. Moreover, the weight of TTX will be much less than that of conventional train. It is supposed that TTX will be very sensitive to crosswind. In this paper, numerical analysis is used to investigate aerodynamic characteristics around TTX and obtain the induced lateral force by crosswind. After calculating derailment coefficient and overturning coefficient using numerical results, the crosswind safety of TTX is judged. This paper will be good data for judging crosswind safety of TTX.

  • PDF

Investigation on the Safety of TTX in Strong Cross wind (강한 측풍에 대한 한국형 고속 틸팅 열차의 안전성 고찰)

  • Kim, Duck-Young;Yun, Su-Hwan;Ha, Jong-Soo;Rho, Joo-Hyun;Kwon, Hyeok-Bin;Ko, Tae-Hwan;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.271-277
    • /
    • 2007
  • The Korean Tilting Train eXpress (TTX) development program is in progress for the purpose of running speed or passenger's comfort improvement at the curved track. However, the speed up and light weight of train make poor the dynamic safety of the TTX in strong cross wind. In this paper, 3-dimensional numerical analysis on the flow field around the TTX under strong cross wind is performed for each operating condition, such as the train speed, cross wind speed, tilting/nontilting condition, and so on. Due to the strong cross wind, the pressure distribution around the train becomes asymmetric, especially at the leading car. Asymmetrical pressure distribution causes the side force and strong unstability. The side force on the train is proportional to the train speed and cross wind speed. Based on the numerical results, the overturning coefficients are predicted for investigation of the train stability, and all of them are less than the critical value, 0.9. The results in this study would be a good data for providing importance to judgement of cross wind safety of TTX.