• Title/Summary/Keyword: Overpotential

Search Result 162, Processing Time 0.026 seconds

Hydrogen Production by the High Temperature Steam Electrolysis of NiO/YSZ/Pt Cell (NiO/YSZ/Pt 전해셀의 고온 수증기 전해에 의한 수소제조 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Lee, Shi-Woo;Seo, Doo-Won;Hong, Ki-Suk;Han, In-Sub;Woo, Sang-Kuk
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2006
  • High temperature electrolysis is a promising technology to produce massively hydrogen using renewable and nuclear energy. Solid oxide fuel cell materials are candidates as the components of steam electrolysers. However, the polarization characteristics of the typical electrode materials during the electrolysis have not been intensively investigated. In this study, NiO electrode was deposited on YSZ electrolyte by spin coat process and firing at $1300^{\circ}C$. Pt electrode was applied on the other side of the electrolyte to compare the polarization characteristics with those by NiO during electrolysis. The $H_2$ evolution rate was also monitored by measuring the electromotive force of Lambda probe and calculated by thermodynamic consideration. At low current density, Pt showed lower cathodic polarization and thus higher current efficiency than Ni, but the oxidation of Ni into NiO caused the increase of anodic resistance with increasing current density. High overpotential induced high power consumption to produce hydrogen by electrolysis.

Effect of Operating Conditions on Cold Startup of PEMFC Stack (운전조건에 따른 PEMFC 스택 냉시동 특성 연구)

  • Ko, Jae-Jun;Lee, Jong-Hyun;Kim, Sae-Hoon;Ahn, Byung-Ki;Lim, Tae-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.3
    • /
    • pp.224-231
    • /
    • 2009
  • The improvement of cold start capability is one of the most challenging tasks to be solved for commercialization of fuel cell vehicle. In this study, cold start test and ice blocking test(IBT) of fuel cell stack were carried out under various operating conditions. This fuel cell stack can be thawed from -20$^{\circ}$C within 25s and the voltage change was found to be comprised of 4 steps; the first step is the voltage decrease by overpotential, the second step is the voltage increase by the cell temperature increase, the third step is the voltage decrease by ice blocking, and the last step is the voltage increase by thawing. Bootstrap startup was failed after shutdown at temperature under 40$^{\circ}$C because of much condensed water in the fuel cell. Quantitative estimation of cold start capability have been demonstrated by ice blocking test(IBT). In the results, it was found that cold start capability was improved double every 10$^{\circ}$C from 30$^{\circ}$C to 65$^{\circ}$C and enhanced by 30% at the condition of SR 3/4 compared to SR 1.5/2.0 and enhanced by 20% with dry purge condition compared to with RH 50% purge condition.

Effectiveness of the Sensor using Lead Dioxide Electrodes for the Electrochemical Oxygen Demand (전기화학적 산소요구량 측정용 이산화납 전극 센서의 유효성)

  • Kim, Hong-Won;Chung, Nam-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2012
  • The electrochemical oxygen demand (ECOD) is an additional sum parameter, which has not yet found the attention it deserves. It is defined as the oxygen equivalent of the charge consumed during an electrochemical oxidation of the solution. Only one company has yet developed an instrument to determine the ECOD. This instrument uses $PbO_2$-electrodes for the oxidation and has been successfully implemented in an automatic on-line monitor. A general problem of the ECOD determination is the high overpotential of electrochemical oxidations of most organic compounds at conventional electrodes. Here we present a new approach for the ECOD determination, which is based on the use of a solid composite electrodes with highly efficient electro-catalysts for the oxidation of a broad spectrum of different organic compounds. Lead dioxide as an anode material has found commercial application in processes such as the manufacture of sodium per chlorate and chromium regeneration where adsorbed hydroxyl radicals from the electro-oxidation of water are believed to serve as the oxidizing agent. The ECOD sensors based on the Au/$PbO_2$ electrode were operated at an optimized applied potential, +1.6 V vs. Ag/AgCl/sat. KCl, in 0.01 M $Na_2SO_4$ solution, and reduced the effect of interference ($Cl^-$ and $Fe^{2-}$) and an expended lifetime (more than 6 months). The ECOD sensors were installed in on-line auto-analyzers, and used to analyze real samples.

Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 동적 모델)

  • Ha, Seung-Bum;Chang, Ikw-Hang;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

Relation between Magnetic Properties and Surface Morphology of Co-Base Alloy Film by Electrodeposition Method (전착법을 이용한 Co계 합금박막의 표면형태와 자기특성과의 관계)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.624-630
    • /
    • 2017
  • In this study, we investigated the overpotential of precipitation related to the catalytic activity of electrodes on the initial process of electrodeposition of Co and Co-Ni alloys on polycrystalline Cu substrates. In the case of Co electrodeposition, the surface morphology and the magnetic property change depending on the film thickness, and the relationship with the electrode potential fluctuation was shown. Initially, the deposition potential(-170 mV) of the Cu electrode as a substrate was shown, the electrode potential($E_{dep}$) at the $T_{on}$ of electrodeposition and the deposition potential(-600 mV) of the surface of the electrodeposited Co film after $T_{off}$ and when the pulse current was completed were shown. No significant change in the electrode potential value was observed when the pulse current was energized. However, in a range of number of pulses up to 5, there was a small fluctuation in the values of $E_{dep}$ and $E_{imm}$. In addition, in the Co-Ni alloy electrodeposition, the deposition potential(-280 mV) of the Cu electrode as the substrate exhibited the deposition potential(-615 mV) of the electrodeposited Co-Ni alloy after pulsed current application, the $E_{dep}$ of electrodeposition at the $T_{on}$ of each pulse and the $E_{imm}$ at the $T_{off}$ varied greatly each time the pulse current was applied. From 20 % to less than 90 % of the Co content of the thin film was continuously changed, and the value was constant at a pulse number of 100 or more. In any case, it was found that the shape of the substrate had a great influence.

Modified Agglomerated Film Model Applied to a Molten Carbonate Fuel Cell Cathode (실측자료를 이용한 Agglomerated Film Model의 용융탄산염 연료전지 산소전극 성능모사)

  • 임준혁;김태근
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.593-603
    • /
    • 1996
  • A dual-porosity filmed agglomerate model for the porous cathode of the molten carbonate fuel has been investigated to predict the cell performance. A phenomenological treatment of molecular, kinetic and electrode parameters has been given. The major physical and chemical phenomena being modeled include mass transfer, ohmic losses and reaction kinetics at the electrode- electrolyte interface. The model predicts steady-state cell performance, given the above conditions that characterize the state of the electrode. Quasi-linearization and finite difference techniques are used to solve the coupled nonlinear differential equations. Also, the effective surface area of electrode pore was obtained by mercury porosimeter. The results of the investigation are presented in the form of plots of overpotential vs. current density with varied the electrode material, gas composition and mechanism. The predicted polarization curves are compared with the empirical data from 1 c$m^2$ cell. A fair correspondence is observed.

  • PDF

Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells (고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구)

  • AHN, SUNGHA;OH, KYEONGMIN;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

Electrochemical Characteristics of Nano-sized A2MnPO4F (A = Li, Na) as Cathode Materials for Lithium ion Batteries

  • Cho, Woosuk;Song, Jun Ho;Kim, Sang-Min;Kim, Dong-Jin;Kang, Min-Gu;Kim, Jeom-Soo;Kim, Young-Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.113-118
    • /
    • 2013
  • Fluorophosphate, $Na_2MnPO_4F$ as new cathode material was synthesized by carbothermal treatment method. Prepared $Na_2MnPO_4F$ has particle size under 100 nm and residual carbon exists in surface of $Na_2MnPO_4F$. Additional carbon coating was performed in order to increase the electrochemical properties. Even capacity and overpotential were improved by carbon coating using mechanical ball milling, the reduced crystallinity limited the drastic improvement of the electrochemical properties. To solve this problem, re-heat treatment was involved to recover crystallinity and then notable improvement of electrochemical properties was obtained. Specific amount of $Li^+$ that participates in electrochemical $Li^+$ insertion / extraction reaction, was x = 1 in $Li_xNa_{2-x}MnPO_4F$ within the voltage range of 2.0 to 4.8 V. The doubled capacity by 2 electron reaction can be obtained when NMPF is charged to higher voltage over 4.8 V.

A Study on Iron Electrode of Ni/Fe Battery(I) -High Utilization of Iron Electrode- (니켈/철 축전지의 철전극에 관한 연구(I) -철전극의 고이용률화-)

  • Kim, Un-Suk;Cho, Won-Il;Cho, Byung-Won;Yun, Kyung-Suk;Shin, Chee-Burm
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • A study on the iron electrode which is a good material for alkaline battery because of its superior characteristics including high theoretical capacity density, low toxicity, low cost and inexhaustible supply was performed to develop high performance nickel-iron secondary battery. The characteristics of chrage-discharge reaction were examined by cyclic voltammetry technique SEM and XRD analysis. The capacity of the test electrodes was determined by the costant current charge-discharge method. It was found that the purity and particle size of iron material were the major determinant factors of electrode capacity. With the addition of $Na_2S$ into the electrolyte the capacity of electrode was increased about 20 % caused by the prevention of passivation and the increase of hydrogen overpotential. The stability and capacity of electrode were increased with the use of Ni-fibrex and foamed Ni collectors and also depended on the sintering temperature. The capacity of electrode was 350 mAh/g(0.2 C) which corresponded to 36% utility.

  • PDF

Rechargeable Zn-air Energy Storage Cells Providing High Power Density (고출력.고에너지 밀도의 아연금속-공기전지)

  • Park, Dong-Won;Kim, Jin Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2012
  • Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.