• 제목/요약/키워드: Overlapped Grid Method

검색결과 24건 처리시간 0.022초

중첩 격자 기법을 이용한 지면 효과를 받는 RAE 101 익형의 공력 해석 (AERODYNAMICS OF THE RAE 101 AIRFOIL IN GROUND EFFECT WITH THE OVERLAPPED GRID)

  • 이재은;김윤식;김유진;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.193-198
    • /
    • 2006
  • It takes a lot of time and effort to generate grids for numerical analysis of problems with ground effect because the relative attitude and height of airfoil should be maintained to the ground as well as the inflow. A low Mach number preconditioned turbulent flow solver using the overlap grid technique has been developed and applied to the ground effect simulation. It has been validated that the present method using the multi-block grid gives us highly accurate solutions comparing with the experimental data of the RAE 101 airfoil in an unbounded condition. Present numerical method has been extended to simulate ground effect problems by using the overlapped grid system to avoid tedious work in generating multi-block grid system. An extended method using the overlapped grid has been verified and validated by comparing with results of multi-block method and experimental data as well. Consequently, the overlapped grid method can provide not only sufficiently accurate solutions but also the efficiency to simulate ground effect problems. It is shown that the pressure and aerodynamic centers move backward by the ground effect as the airfoil approaches to the ground.

  • PDF

중첩격자계를 사용한 2차원 복수 물체주위 유동장의 수치 계산 (A Numerical Calculation on Flow Fields around Two-Dimensional Multiple Bodies In Overlapped Grid System)

  • 정세민;이영길;이승희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.105-110
    • /
    • 1996
  • In the present paper, flow fields around two dimensional single and two circular cylinders are analysed by a finite difference method. Navier-Stokes and the continuity equations an solved to simulate the flow fields. A overlapped grid system(the composite of a body boundary-fitted grid system near the body and a rectangular grid system for other flow fields) is used for this calculation. In the use of overlapped grid system, it is most significant thing to exchange the physical quantities from one grid system to the other one continuously, In this research, the linear interpolations of physical quantaties are done for this purpose in the overlapped region. The numerical calculations are carried out for the flows around a circular cylinder and two cylinders to verify the accuracy of present method. The flow fields around two cylinders facing the flow with side by side and tandem arrangement are analysed. The results are compared to other experimental and computational ones done in other single grid system.

  • PDF

공간 및 시간 정확도 향상을 위한 최적의 삽간영역 구성에 관한 연구 (A Study of Optimal Mesh Interface Region Generation to Improve Spatial and Temporal Accuracy)

  • 조금원
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.41-49
    • /
    • 2003
  • The spatial accuracy becomes first-order when second-order conservation schemes including the non-conservative interpolation in general Chimera method are used. To ensure the solution accuracy, the discontinuities must be located away from the overlapped regions, and the length of overlapped region also must be proportional to the grid spacing. In this paper, a proposed method, cut-paste algorithm, is used to satisfy above constraints. The cut-paste algorithm can generate the optimal mesh inteface region automatically, To validate the spatial and temporal accuracy due to the non-conservative interpolation, inviscid and viscous problems are tested.

중첩격자에 대한 이동최소자승법 적용 연구 (APPLICATION OF MOVING LEAST SQUARE METHOD IN CHIMERA GRID METHOD)

  • 이관중;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.17-22
    • /
    • 2007
  • Chimera grid Method is widely used in Computational Fluid Dynamics due to its simplicity in constructing grid system over complex bodies. Especially, Chimera grid method is suitable for unsteady flow computations with bodies in relative motions. However, interpolation procedure for ensuring continuity of solution over overlapped region fails when so-call orphan cells are present. We have adopted MLS(Moving Least Squares) method to replace commonly used linear interpolations in order to alleviate the difficulty associated with orphan cells. MSL is one of interpolation methods used in mesh-less methods. A number of examples with MLS are presented to show the validity and the accuracy of the method.

  • PDF

중첩격자에 대한 이동최소자승법 적용 연구 (APPLICATION OF MOVING LEAST SQUARE METHOD IN CHIMERA GRID METHOD)

  • 이관중;이승수;조진연
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.49-56
    • /
    • 2008
  • Chimera grid methods have been widely used in Computational Fluid Dynamics due to its simplicity in constructing grid systems over complex bodies, and suitability for unsteady flow computations with bodies in relative motion. However, the interpolation procedure for ensuring the continuity of the solution over overlapped regions fails when the so-called orphan cells are present. We have adopted the MLS(Moving Least Squares) method to replace commonly used linear interpolations in order to alleviate the difficulty associated with the orphan cells. MLS is one of the interpolation methods used in mesh-less methods. A number of examples with MLS are presented to show the validity and the accuracy of the method.

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.

HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석 (CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS)

  • 사정환;유영현;박재상;박수형;정성남;유영훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF

차분격자볼츠만법에 ALE모델을 적용한 이동물체 주위의 흐름 및 유동소음의 수치모사 (Computations of Flows and Acoustic Wave Emitted from Moving Body by ALE Formulation in Finite Difference Lattice Boltzmann Model)

  • 강호근
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.48-54
    • /
    • 2006
  • In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in the finite difference lattice Boltzmann method. Some effects are checked by comparing flaw about a square cylinder in ALE formulation and that in the fixed coordinates, and both agree very well. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer region is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in two- and three-dimensional cases are simulated.

중첩 격자를 이용한 제자리 및 전진 비행하는 헬리콥터 로터의 비정상 공력해석 (Unsteady Aerodynamic Analysis for Helicopter Rotor in Hovering and Forward Flight Using Overlapped Grid)

  • 임동균;위성용;김유진;권장혁;이덕주;박수형;정기훈;김승범
    • 한국항공우주학회지
    • /
    • 제37권3호
    • /
    • pp.215-223
    • /
    • 2009
  • 본 연구에서는 헬리콥터 로터 블레이드의 움직임을 모사하기 위해 중첩 격자 기법을 적용하여 헬리콥터 로터의 전진 및 제자리 비행을 모사하였다. 제자리 및 무양력 전진 비행은 Caradonna & Tung의 로터 블레이드를 적용하였으며 전진 비행은 AH-1G 로터 블레이드를 적용하여 수치해석 하였다. 전진 비행 시 cyclic pitch각에 대해서 Newton-Raphson 수렴 방법으로 수치 트림을 수행하였으며 수치 트림에 의한 결과를 실험 및 다른 수치해석 결과와 비교하였을 때 실험값과 유사한 결과를 얻었다. 또한 수치 트림에 의한 결과는 로터 전진면에서 나타나는 BVI 현상을 잘 모사하였다. 지배 방정식은 3차원 비정상 오일러 방정식을 사용하였으며 원방 경계 조건으로 리만 불변치 경계조건을 적용하였다.