• Title/Summary/Keyword: Overhead-line

Search Result 455, Processing Time 0.031 seconds

IEEE 802.15.4a based Localization Algorithm for Location Accuracy Enhancement in the NLOS Environment (실내 NLOS환경에서 정밀도 향상을 위한 IEEE 802.15.4a 기반의 위치추정 알고리즘)

  • Cha, Jae-Young;Kong, Young-Bae;Choi, Jeung-Won;Ko, Jong-Hwan;Kwon, Young-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1789-1798
    • /
    • 2012
  • IEEE 802.15.4a standard can provide a variety of location-based services for ZigBee or wireless network applications by adapting the time-of-arrival (TOA) ranging technique. The non-line-of-sight (NLOS) condition is the critical problem in the IEEE 802.15.4a networks, and it can significantly degrade the performance of the TOA-based localization. To enhance the location accuracy due to the NLOS problem, this paper proposes an energy-efficient low complexity localization algorithm. The proposed approach performs the ranging with the multicast method, which can reduce the message overhead due to packet exchanges. By limiting the search region for the location of the node, the proposed approach can enhance the location accuracy. Experimental results show that the proposed algorithm outperforms previous algorithms in terms of the energy consumption and the localization accuracy.

Mechanical Loads of Dropper for High Speed Electric Railway (고속 전차선로 드로퍼에 대한 기계적 하중에 관한 연구)

  • Lee, Gi-Chun;Lee, Tae-Hoon;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.222-227
    • /
    • 2011
  • The dropper supports the contact wire and is attached using various types of dropper clips on the catenary. Droppers are subject to mechanical stress from buckling during the passage of pantographs. In order to investigate failure causes for the high speed line dropper, theoretical analyses and experiments have been carried out. In this paper, mathematical formulas are derived for the pre-sag of the dropper static load. The measured values in the experiment were similar to the theoretical predictions. To analyze the cause on fracture of dropper wire, we have conducted analysis such as SEM(Scanning Electron Microscope) of fractured specimens in the field and new specimens. Finally, we performed measurement for the variation of dynamic load on the dropper when a pantograph moved at 300km/h under the Korean high speed overhead line. If such mechanical load occur repeatedly with every passing pantograph, it is possible that the dropper wire will break due to fatigue. This results will be used for special management of high speed catenary system maintenance and life estimation of dropper.

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

Environmentally Friendly Design Program for HVAC Overhead Transmission Lines (HVAC 가공 송전선로 환경친화설계프로그램 TLCALC)

  • Yang, Kwang-H.;Ju, Mun-N.;Myung, Sung-H.;Shin, Koo-Y.;Lee, Sung-D.;Lee, Dong-I.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.67-70
    • /
    • 2005
  • HVAC transmission lines must be designed to satisfy environmental regulations. Therefore it is necessary to pre-evaluate environmental problems for transmission line designer using prediction program. In this study, environment design software, TLCALC 2001 for transmission lines was developed as a comprehensive window program. It has 6 modules that are audible noise, radio noise, television noise, magnetic field, electric field and conductor surface gradient. TLCALC 2001 solved a few problems in use of the existing foreign tools and took several advantages. Experienced designers can get the results of calculation within about 15 minutes. Because the use of TLCALC 2001 is easy and practical, this program will be usefully applied to the environmental friendly design and construction of HVAC transmission lines. In the future, it is expected that public complaints and social environmental cost will be reduced by the use of TLCALC 2001.

  • PDF

Numerical Verification of B-WIM System Using Reaction Force Signals

  • Chang, Sung-Jin;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.637-647
    • /
    • 2012
  • Bridges are ones of fundamental facilities for roads which become social overhead capital facilities and they are designed to get safety in their life cycles. However as time passes, bridge can be damaged by changes of external force and traffic environments. Therefore, a bridge should be repaired and maintained for extending its life cycle. The working load on a bridge is one of the most important factors for safety, it should be calculated accurately. The most important load among working loads is live load by a vehicle. Thus, the travel characteristics and weight of vehicle can be useful for bridge maintenance if they were estimated with high reliability. In this study, a B-WIM system in which the bridge is used for a scale have been developed for measuring the vehicle loads without the vehicle stop. The vehicle loads can be estimated by the developed B-WIM system with the reaction responses from the supporting points. The algorithm of developed B-WIM system have been verified by numerical analysis.

Development of a Diagnostic Module Based Maintenance Support Device for Fiber Optic Telecommunication Cable in Overhead Region (고소지역 작업현장에서 공중선 상태 진단 모듈 기반 정비 지원 장치 개발)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.469-474
    • /
    • 2014
  • Installed on telephone poles laid scrambling to monitor the status of the communication lines, and cost information can provid eadditional information tools to develop systems to support on-site monitoring. Aerial support for a maintenance monitoring module to apply an embedded system, and information processing applications manufactured. In this study, a comprehensive plan in accordance with the government's aerial maintenance work to prevent accidents spread support for the device to immediately take advantage of big cities and aerial maintenance business, Construction worker accused of bias and aims to improve efficiency of maintenance puts.

Influence of Combustion Flame on Breakdown Characteristics of Vertical-Model Power Lines (수직배열 모델 전력선의 절연파괴 특성에 미치는 화염의 영향)

  • Park, Kwang-Seo;Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.85-92
    • /
    • 2008
  • Occurring forest fire or burning bushes beneath overhead transmission lines have caused breakdown disturbances of the system in many countries. In this study, experiments for flashover characteristics in the simulated condition of vertical power lines were conducted so as to investigate the reduction in insulation strength caused by combustion flame. As the results of an experimental investigation, it is demonstrated that flame can reduce breakdown voltages of the model lines according to height(h) of flame. The breakdown voltages were decreased with decreasing the height(h) of flame it can be seen that the average reduction of flashover levels, in comparison with the no-flame case, are 46.2[%] for h=9[cm] and 62.5[%] for h=3[cm] when ac voltage is applied.

Distance Relaying Algorithm Using a DFT-based Modified Phasor Estimation Method (DFT 기반의 개선된 페이저 연산 기법을 적용한 거리계전 알고리즘)

  • Lee, Dong-Gyu;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1360-1365
    • /
    • 2010
  • In this paper, we propose a distance relaying algorithm using a Discrete Fourier Transform (DFT)-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Most distance relays are based on estimating phasors of the voltage and current signals. A DFT is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. For this reason, distance relays have a tendency to over-reach or under-reach in the presence of DC offset components in a fault current. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. The error due to DC offsets in a DFT is calculated and eliminated using the outputs of an even-sample-set DFT and an odd-sample-set DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated for a-phase to ground faults on a 345 kV, 50 km, simple overhead transmission line. The Electromagnetic Transient Program (EMTP) is used to generate fault signals. The evaluation results indicate that adopting the proposed algorithm in distance relays can effectively suppress the adverse influence of DC offsets.

The Study of Electromagnetic Force by Three Phase Short-Circuit Test of Cable (케이블 삼상단락 실증시험을 통한 전자력 영향 검토)

  • Hong, Dong-Suk;Kim, Hae-Jun;Park, Sung-Min;Chang, Woo-Suk;Park, Heong-Suk;Jang, Tae-In;Kang, Ji-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.395_396
    • /
    • 2009
  • This paper handles with effect of electromagnetic force on the cables by fault current accompanied by accident of underground transmission cable. Even though underground transmission cable is an essential transmission method to supply stable power for downtown and population center, interaction of electromagnetic force from fault current is very large comparing to overhead transmission line due to restricted installation space such as tunnel, etc. and close consideration is required for it. This paper describes the effect of electromagnetic force through results of three phase short-circuit test and electromagnetic force analysis using theoretical calculations and electrical evaluation test after three phase short-circuit test, which will be utilized as basic materials for improvement and development of cleat, hanger, etc. to reduce and release effect of electromagnetic force in the future.

  • PDF