• Title/Summary/Keyword: Overhead-line

Search Result 455, Processing Time 0.023 seconds

Suitability Evaluation on Joint Operation of Neutral Wire and Overhead Grounding Wire through Lightning Surge Analysis in Combined Distribution System (혼합배전계통에서 뇌과전압 해석을 통한 중성선과 가공지선 혼용 운전의 타당성 평가)

  • Jeong, Seok-San;Lee, Jong-Beom;Kim, Yong-Kap;Song, Il-Keun;Kim, Byoung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2135-2142
    • /
    • 2010
  • This paper studies the validity about a joint operation of neutral wire and overhead grounding wire in combined distribution systems. The overhead grounding wire and neutral wire are currently installed separately and grounded by common. However there is no any ineffectiveness or electrical problem in case of the proposed system, such system can be operated at real distribution system. Therefore this paper describes the suitability of a joint operation through lightning surge analysis on combined distribution systems. Lightning surge analysis is carried out by EMTP/ATPDraw to obtain the overvoltage of overhead line and underground cable in various conditions such as locations and current types of lightning stroke. Overvoltage gained by the analysis show that the insulation strength of the joint operation case is not stable compare with the current operation case.

Arc Fusion Protection of Covered Conductors Using AFPD (섬락 단선 방지 장치에 의한 피복 절연 가공배전 선로의 유도뢰애 의한 단선 방지)

  • Lee, Yong-Han;Jung, Dong-Hak;Ha, Bok-Nam;NamKung, Do;Kim, Myong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.800-802
    • /
    • 1997
  • After flashover occurs on the overhead distribution line by lighting strokes(direct or induced), the power frequency arc current continues. If lightning flashover occurs on the overhead lines using covered conductors, the power frequency art current with fixed path overheats the conductor, and arc fusion fault can be occurred. There are two categories protecting or reducing methods of arc fusion faults caused by lightning stokes. - Reducing lightning flashover rate : G/W, LA, etc. - Protection by AFPD(Arc Fusion Protection Device) : power follow current interruption. This paper presents lightning surge phenomena on overhead distribution lines and protecting performance of arc fusion Protection devices to the lightning strokes nearby overhead line.

  • PDF

Analysis of Lightning Overvoltage with Earth of Overhead Grounding Wire and Installation Types of Arrester in Double Circuits Distribution Systems (2회선 배전계통에서 가공지선 접지 및 피뢰기 설치환경에 따른 뇌과전압 해석)

  • Jung, Chae-Kyun;Kim, Sang-Kuk;Lee, Jong-Beom;Jeong, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.497-499
    • /
    • 2003
  • This paper analyses the lightning overvoltage with earth of grounding wire and installation types of arresters in double circuits distribution systems. First, the model for analysis is selected severer case between upper line and lower line when the direct lightning surge strikes on the overhead grounding wire. The lightning overvoltage is variously calculated with earth distance between overhead grounding wires. This paper also analyses the effect of the installation distance between arrestors and the earth resistance of overhead grounding wire. From these results, authors examine the rationality of BIL that is applied in distribution system.

  • PDF

Analysis of Lightning Overvoltage and Shielding Effect of Arrester and Overhead Grounding Wire on DC Railroad (직류전차선로의 뇌과전압 해설 및 피뢰기와 가공지선 차폐효과 검토)

  • Jung, Chae-Kyun;Hong, Dong-Suk;Lee, Jong-Beom;Cho, Han-Goo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.359-364
    • /
    • 2001
  • This paper presents the influence of the lightning overvoltage and the shielding effect of lightning arresters and overhead grounding wires on the DC railroad systems. Modeling of railroad system is established in ATPDraw to perform the simulation and the line constants of railroad were calculated using ATP_LCC. When a direct lightning strikes to the DC railroad, the result of simulation reveals that the shielding effect of arresters is reduced at messenger, trolly-wire, and the shielding effects of overhead grounding wire is over 90% than the case which does not include it. Therefore it is evaluated that overhead grounding wires should be installed in the DC railroad line.

  • PDF

The Degradation Properties on Overhead Contact Line Using Artificial Discharge (임의 방전을 이용한 전차선 열화특성)

  • Ko, Byeong-Hun;Park, Young;Kwon, Sam-Young;Jung, Ho-Sung;Park, Hyun-June;Kim, Chang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.209-210
    • /
    • 2007
  • This paper describes the various wavelengths of electrical arc on overhead contact line for improvement of the current collection performance. The tests are performed with the arc measuring device and a welding machine to generate electrical are artificially. The experimental result shows the electrical are on overhead contact line and pantograph could be analyzed by artificial discharge.

  • PDF

Assesment of the Decrement in Tensile Strength of an Overhead Transmission Line's Conductor in Korean Power System

  • Bae, In-Su;Kim, Dong-Min;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.61-69
    • /
    • 2006
  • The tensile strength of an overhead transmission line's conductor in response to an aging is being assessed in this paper. It is our view that, the decrement in the conductor's tensile strength is a key index that can be used to determine a conductor's end of life and a current limits. This paper describes a probabilistic method of assessing this index for main transmission lines which are responsible for the north bound power flow in the Seoul metropolitan area. Such an assessment can be a useful guide for economic system operation.

An Analysis on Electrical Property Measurement of Catenary System in Railway (철도 전차선로 전기적 특성 검측 기술 분석)

  • Park, Young;Cho, Yong-Hyeon;Jung, Ho-Sung;Lee, Ki-Won;Gwon, Sam-Yeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.115-115
    • /
    • 2010
  • This paper introduces a measurement system that measures behavior and electrical characteristics of overhead contact line irregular sections in real-time. For verification, we developed a prototype of the real-time overhead contact line irregular section behavior measurement system and a monitoring system for field tests. The current and temperature of contact wires and messenger wires were measured real-time by applying the system at KTX a commercial line. Therefore, acquiring data is possible with the developed system and this system that measures one of the fundamental and key factors, the catenary current, should be applicable to various areas such as detecting characteristics for designing overhead contact lines, enhancing speed, and enhancing energy.

  • PDF

A Simulator for Calculating Normal Induced Voltage on Communication Line

  • Heo, Jeong-Yong;Seo, Hun-Chul;Lee, Soon-Jeong;Kim, Yoon Sang;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1394-1400
    • /
    • 2014
  • The current flowing through the overhead transmission lines causes induced voltage on the communication lines, which can be prevented by calculating the induced voltage at the planning stage for overhead transmission line installment through an agreement between the communication and electric power companies. The procedures to calculate the induced voltages, however, are complicated due to the variety of parameters and tower types of the overhead transmission lines. The difficulty necessitates the development of a simulator to measure the induced voltage on the communication lines. This paper presents two simulators developed for this purpose; one using the Data Base (DB) index method and the other using the Graphic User Interface (GUI) method. The simulators described in this paper have been implemented by the EMTP (Electromagnetic Transient Program).

Analysis on Ampacity of Overhead Transmission Lines Being Operated

  • Yan, Zhijie;Wang, Yanling;Liang, Likai
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1358-1371
    • /
    • 2017
  • Dynamic thermal rating (DTR) system is an effective method to improve the capacity of existing overhead line. According to the methodology based on CIGRE (International Council on Large Electric systems) standard, ampacity values under steady-state heating balance can be calculated from ambient environmental conditions. In this study, simulation analysis of relations between parameters and ampacity is described as functional dependence, which can provide an effective basis for the design and research of overhead transmission lines. The simulation of ampacity variation in different rating scales is described in this paper, which are determined from real-time meteorological data and conductor state parameters. To test the performance of DTR in different rating scales, capacity improvement and risk level are presented. And the experimental results show that the capacity of transmission line by using DTR has significant improvement, with low probability of risk. The information of this study has an important reference value to the operation management of power grid.

Dynamic Line Rating Estimation Using Indirect Conductor Method in Overhead Transmission Lines (간접도체 방식을 이용한 가공송전선의 동적송전용량 추정)

  • Kim, Sung-Duck;Lee, Seung-Su;Jang, Tae-In;Kang, Ji-Won;Lee, Dong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.189-197
    • /
    • 2004
  • The thermal rating of an overhead conductor, which is the maximum allowable current, is generally calculated on the basis of heat balance equation found in IEEE P738 standard. This is given as a function of the weather conditions such as air temperature, wind speed, wind direction, and sun heat. Wind speed among such weather parameters is strongly affected on determining the line rating when it appears very low level. Therefore there may occur inaccuracy since most anemometers used in line rating monitor systems may show low resolutions and stall speed performance. In this paper, we introduce a new methodology for determining the dynamic line rating in overhead transmission lines, without using my anemometer. It was shown that wind speed can be estimated by the temperatures of 2 indirect conductors, and through experimental study, the dynamic line rating obtained by the estimated wind speed was very closely that of weather model.