• Title/Summary/Keyword: Overconsolidation

Search Result 52, Processing Time 0.033 seconds

Settlement prediction for footings based on stress history from VS measurements

  • Cho, Hyung Ik;Kim, Han Saem;Sun, Chang-Guk;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.371-384
    • /
    • 2020
  • A settlement prediction method based on shear wave velocity measurements and soil nonlinearity was recently developed and verified by means of centrifuge tests. However, the method was only applicable to heavily overconsolidated soil deposits under enlarged yield surfaces. In this study, the settlement evaluation method was refined to consider the stress history of the sublayer, based on an overconsolidation ratio evaluation technique, and thereby incorporate irrecoverable plastic deformation in the settlement calculation. A relationship between the small-strain shear modulus and overconsolidation ratio, which can be determined from laboratory tests, was adopted to describe the stress history of the subsurface. Based on the overconsolidation ratio determined, the value of an empirical coefficient that reflects the effect of plastic deformation over the elastic region is determined by comparing the overconsolidation ratio with the stress increment transmitted by the surface design load. The refined method that incorporate this empirical coefficient was successfully validated by means of centrifuge tests, even under normally consolidated loading conditions.

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

Determination of the Overconsolidation Ratio using the Piezocone Penetration Test (피에조콘 관입시험에 의한 과압밀비 산정에 관한 연구)

  • Lee, Ki-Se;Shin, Won-Tae;Goo, Nam-Shil;Kim, Hak-Joon
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • Using the results of the Piezocone Penetration Test(PCPT) which were executed at the Yangsan-Mulgum site, the applicability of the interpretation methods far estimating the OCR(Overconsolidation Ratio) of soft clay was evaluated. At the same time, the results from the laboratory tests using the total of 172 undisturbed soft clay samples taken from the 44 bore holes of the Yangsan-Mulgum site were used to compare the OCR values obtained from the consolidation test with those from the PCPT. The relationship between the predicted overconsolidation ratio($OCR_p$) using the PCPT and the measured overconsolidation ratio($OCR_c$) from the laboratory consolidation tests are investigated and presented in this study. The $OCR_p$ by using the Powell et al.'s method for non-fissured clay from the results of the PCPT shows the best relationship with the $OCR_c$ obtained from the laboratory consolidation test.

A Study on the Evaluation of Overconsolidation Ratio of Marine Clay by Flat DMT (DMT를 이용한 해성점토의 과압밀비 추정에 관한 연구)

  • Jeong, Hyeok;Kim, Jong-Kook;Chae, Young-Su;Yoon, Won-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.979-986
    • /
    • 2008
  • In this study, it enforced DMT test, CPTu test, laboratory consolidation test, because it estimated stress history of Gwangyang port marine clay. Through DMT test obtained Horizontal stress index($K_D$), predicted overconsolidation ratio by $K_D$. To compare empirical equation with laboratory consolidation test and CPTu test calculated OCR examined application. The result, Powell & Uglow(1988) method underestimated OCR value in comparison with Suggestion. Comparatively Byeon wi yong(2004) and Chang(1991) method seem to exactly predict in-situ stress states. Sugawara(1988) method of CPTu test seems to underestimate OCR.

  • PDF

An Experimental Study on Depositional Environments and Consolidation Properties of Shihwa Deposits (시화지역 퇴적층의 퇴적환경과 압밀특성에 관한 연구)

  • 원정윤;장병욱;김동범;손영환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.49-58
    • /
    • 2004
  • Consolidation properties of Shihwa deposits were analysed by means of depositional environments. Depositional environments including particle size distributions, sediment structures, geochemical properties, porewater chemistries and carbon age dating were analysed using undisturbed samples retrieved successively from a boring hole in the study area. Laboratory oedometer tests and anisotropic consolidated triaxial tests (CKoUC) for undisturbed samples were performed to examine the overconsolidation phenomena. Based on the results of analysis of depositional environments, it was found that the upper silt/clay mixed layer was deposited under marine condition while underlying sand and clay layers were deposited under fluvial condition. Planar laminated structures of silts and clays were dominant in marine deposits. Although there was no clear evidences that geological erosion had occurred in marine deposits, overconsolidation ratios of the upper marine samples were greater than unity Stress Paths of the upper marine samples behaved similarly to those of normally consolidated clays. Data plotted in stress state charts showed that the marine deposits were normally consolidated in geological meaning. These apparent overconsolidation of the marine deposits can be explained by the structures i.e. chemical bonding due to the difference of the rate of deposition, not by geological erosions and ground water fluctuations.

V%drained Creep Rupture of an Anisotropically Overconsolidated Clay (이방과압밀점토의 비배수크리프파괴)

  • 강병희;오선호
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.153-162
    • /
    • 1996
  • The undrained creep tests with isotropically and anisotropically overconsolidated clays were performed to investigate the effects of anisotropic consolidation on the undrained creep rupture behavior. Results of tests showed that the undrained creep rupture behaviors were iuluenced significantly by stress history including overconsolidation ratio and consolidation pressure ratio$(\sigma_{3c}/\sigma_{le})$. That is. the creep strength of clay increases with the increase of both overconsolidation ratio and consolidation pressure ratio. It, therefore, is dangerous to decide the possibility of creep rupture of clay by the isotropically consolidated creep rupture test in the case of the coefficient of earth pressure lower than 1.0. And the creep strength of clay could be obtained by the equation of the upper yield strength suggested by Finn and Shead(1973) irrespective of both overconsolidation ratio and consolidation pressure ratio.

  • PDF

An experimental study on depositional environments and consolidation properties of Shihwa deposits (시화지역 퇴적층의 퇴적환경과 압밀 특성에 관한 연구)

  • Won, Jeong-Yun;Chang, Pyoung-Wuck;Kim, Dong-Beom;Son, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.203-210
    • /
    • 2004
  • Consolidation properties were analysed by means of depositional environments. Depositional environments including geochemical properties, porewater chemistry, sediment structures, particle size distributions and carbon age dating were analysed using undisturbed samples retrieved successively from a boring hole in the study area. Laboratory oedometer tests and anisotropic consolidated triaxial tests(CKoUC) were performed to examine the overconsolidation phenomenons. Based on the carbon age dating results and profiles of geochemical properties, porewater chemistry, salinity and pH, it was founded that the upper silt/clay complex layer was deposited under marine condition while sand and clay layers were deposited under fluvial condition. Planar laminated structures of silts and clays were dominant in marine deposits. Although there was no clear evidences that geological erosion had been occurred in marine deposits, overconsolidation ratio obtained from oedometer tests were greater than unity. Stress paths of samples behaved similar to those of normally consolidated clays. Data plotted in stress state charts proposed by Burland(1990) and Chandler(2000) showed that the marine deposits were geologically normally consolidated. These apparent overconsolidations can be explained by the fabric and chemical bonding due to the difference of the rate of deposition.

  • PDF

Liquefaction Behaviour of Saturated Silty Sand Under Monotonic Loading Conditions (정적하중 상태에서 포화된 실트질 모래의 액상화 거동)

  • Lee Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.67-74
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour of saturated silty sand under monotonic loading conditions. The undrained soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. Undrained triaxial compression tests were performed at different confining pressures, void ratios and overconsolidation ratios and the samples were sheared to axial strains of about 20% to obtain monotonic loading conditions. It is shown that increasing confining pressures, void ratios and overconsoildation ratios increases the deviator stress, but it has no effect on increasing the dilatant tendencies. It is shown that complete static liquefaction was observed regardless of increases in the confining pressure, void ratio and overconsolidation ratio. Therefore, the confining pressure, void ratio and overconsoildation ratio does not provide significant effects on the liquefaction resistance of the silty sand. The presence of fines in the soil was shown to greatly increase the potential for static liquefaction and creates a particle structure with high compressibility for all cases.

Effect of Liquefaction Resistence of Fine-Grained Soils on the Reclaimed Land (준설매립지반의 세립토가 액상화 강도에 미치는 영향)

  • Kim, Jong-Kook;Yoon, Won-Sub;Park, Sang-Jun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1717-1726
    • /
    • 2008
  • Vibration triaxial compression test was put in influence for liquefaction strength of fine grained soil of dredged and reclaimed ground and consideration for fine fraction content, relative density, overconsolidation ratio and plasticity index in this study. By the results of these test, the liquefaction strength increased with fine fraction content and the relative density, overconsolidation ratio incresed with liquefaction strength too. However, in the case of nonplastic silt was the smalist liquefaction strength which influenced by dilatancy and interlocking when silt content was 34.7%(average grading 0.12mm). Therefore, liquefaction strength of fine grained soil of dredged and reclaimed ground increased with fine fraction content so it will help to make lower liquefaction.

  • PDF

Evaluation of long term shaft resistance of the reused driven pile in clay

  • Cui, Jifei;Rao, Pingping;Wu, Jian;Yang, Zhenkun
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • Reusing the used pile has not yet been implemented due to the unpredictability of the bearing capacity evolution. This paper presents an analytic approach to estimate the sides shear setup after the dissipation of pore pressure. Long-term evolution of adjacent soil is simulated by viscoelastic-plastic constitutive model. Then, an innovative concept of quasi-overconsolidation is proposed to estimate the strength changes of surrounding soil. Total stress method (α method) is employed to evaluate the long term bearing capacity. Measured data of test piles in Louisiana and semi-logarithmic time function are cited to validate the effectiveness of the presented method. Comparisons illustrate that the presented approach gives a reasonably prediction of the side shear setup. Both the presented method and experiment show the shaft resistance increase by 30%-50%, and this highlight the potential benefit of piles reutilization.