Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.2.171

Evaluation of long term shaft resistance of the reused driven pile in clay  

Cui, Jifei (Department of Civil Engineering, University of Shanghai for Science and Technology)
Rao, Pingping (Department of Civil Engineering, University of Shanghai for Science and Technology)
Wu, Jian (Department of Civil Engineering, University of Shanghai for Science and Technology)
Yang, Zhenkun (Department of Civil Engineering, University of Shanghai for Science and Technology)
Publication Information
Geomechanics and Engineering / v.29, no.2, 2022 , pp. 171-182 More about this Journal
Abstract
Reusing the used pile has not yet been implemented due to the unpredictability of the bearing capacity evolution. This paper presents an analytic approach to estimate the sides shear setup after the dissipation of pore pressure. Long-term evolution of adjacent soil is simulated by viscoelastic-plastic constitutive model. Then, an innovative concept of quasi-overconsolidation is proposed to estimate the strength changes of surrounding soil. Total stress method (α method) is employed to evaluate the long term bearing capacity. Measured data of test piles in Louisiana and semi-logarithmic time function are cited to validate the effectiveness of the presented method. Comparisons illustrate that the presented approach gives a reasonably prediction of the side shear setup. Both the presented method and experiment show the shaft resistance increase by 30%-50%, and this highlight the potential benefit of piles reutilization.
Keywords
driven pile; long term; quasi-overconsolidation; reuse; side shear setup;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Shibata, T. (1963), "On the volume changes of normally-consolidated clays", Disaster prevention Research Institute, Kyoto University, 6, 128-134. https://doi.org/10.2472/jsms.12.264.   DOI
2 Li, L., Li, J.P., Sun, D.A. and Gong, W.B. (2017a), "Analysis of time-dependent bearing capacity of a driven pile in clayey soils by total stress method", Int. J. Geomech., 17(7), 04016156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000860.   DOI
3 Chen, H.H., Li, L., Li, J.P. and Sun, D.A. (2021b), "A generic analytical elastic solution for excavation responses of an arbitrarily-shaped deep opening under biaxial in-situ stresses", Int. J. Geomech., 22(4), 0402202. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002335.   DOI
4 Chen, H. H. and Mo, P. Q. (2022), "An undrained expansion solution of cylindrical cavity in SANICLAY for K0-consolidated clays", J Rock Mech Geotech. https://doi.org/10.1016/j.jrmge.2021.10.016   DOI
5 Cui, J.F., Rao, P.P., Li, J.P., Chen, Q.S. and Nimbalkar, S. (2022), "Time-dependent evolution in bearing capacity of driven piles in clays combining installation, consolidation and subsequent loading", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, England, February, 1-47. https://doi.org/10.1680/jgeen.21.00200.   DOI
6 Matsuoka, H, Yao, Y.P., and Sun, D.A. (1999), "The cam-clay models revised by the SMP criterion", Soils Found., 39(1), 81-95. https://doi.org/10.3208/sandf.39.81.   DOI
7 Thompson, W.R., Lloyd, H. and Steven, S. (2009), "Test pile program to determine axial capacity and pile setup for the Biloxi bay bridge", DFI Journal-The Journal of the Deep Foundations Institute, 3(1), 13-22. https://doi.org/10.1179/dfi.2009.002.   DOI
8 Wijayasundara, M., Mendis, P. and Crawford, R.H. (2018), "Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete", J. Clean Prod., 174, 591-604. https://doi.org/10.1016/j.jclepro.2017.10.301.   DOI
9 Li, L., Li. J.P., Sun, D.A. and Zhang, L.X. (2017b), "Time-dependent bearing capacity of a jacked pile: An analytical approach based on effective stress method", Ocean Eng., 143, 177-185. https://doi.org/10.1016/j.oceaneng.2017.08.010.   DOI
10 Liingaard, M., Augustesen, A. and Lade, P.V. (2004), "Characterization of models for time-dependent behavior of soils", Int. J. Geomech., 4(3), 157-177, https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157).   DOI
11 Mesri, G. and Godlewski, P.M. (1977), "Time and stress-compressibility interrelationship", J. Geotech. Eng. Div., 103(5), 417-430, https://doi.org/10.1016/0148-9062(77)91005-1.   DOI
12 Perzyna, P. (1966), "Fundamental problems in viscoplasticity", Adv. Appl. Mech., 9(3), 244-377, https://doi.org/10.1016/S0065-2156(08)70009-7.   DOI
13 Karim, M.R. and Gnanendran, C.T. (2014), "Review of constitutive models for describing the time dependent behaviour of soft clays", Geomech. Geoengin., 9(1), 36-51. https://doi.org/10.1080/17486025.2013.804212.   DOI
14 Kou, H.L., Chu, J., Guo, W. and Zhang, M.Y. (2016), "Field study of residual forces developed in pre-stressed high-strength concrete (PHC) pipe piles", Can Geotech. J., 53(4), 696-707. https://doi.org/10.1139/cgj-2015-0177.   DOI
15 Li, L., Li, J.P. and Sun, D.A. (2016), "Anisotropically elastoplastic solution to undrained cylindrical cavity expansion in K0-consolidated clay", Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.   DOI
16 Mo, P.Q. and Yu, H.S. (2017), "Undrained cavity expansion analysis in a unified state parameter model for clay and sand", Geotechnique, 67(6), 503-515. https://doi.org/10.1680/jgeot.15.P.261.   DOI
17 Perzyna, P. (1963), "The constitutive equations for work-hardening and rate sensitive plastic materials", Proceeding of Vibration Problems, Warsaw, 4(4), 281-290.
18 Xu, C.J., Ding, H.B., Luo. W.J., Tong, L.H. and Chen, Q.S. (2020), "Experimental and numerical study on performance of long-short combined retaining piles", Geomech. Eng., 20(3), 255-265. https://doi.org/10.12989/gae.2020.20.3.255.   DOI
19 Li, Y.N. and Changm, L. (2022), "A log-spiral limit equilibrium analysis for passive earth pressure under the effect of unsaturated seepage conditions", Eur. J. Environ. Civ. Eng., 1-19. https://doi.org/10.1080/19648189.2022.2043942.   DOI
20 Xiao, J., Zhang, K. and Akbarnezhad, A. (2018a), "Variability of stress-strain relationship for recycled aggregate concrete under uniaxial compression loading", J. Clean Prod., 181, 753-771. https://doi.org/10.1016/j.jclepro.2018.01.247.   DOI
21 Yang, C.Y., Li, J.P., Li, L. and Sun, D.A. (2021), "Expansion responses of a cylindrical cavity in overconsolidated unsaturated soils: A semi-analytical elastoplastic solution", Comput. Geotech., 130, 103922. https://doi.org/10.1016/j.compgeo.2020.103922.   DOI
22 Yin, Z.Y., Karstunen, M. and Hicher, P.Y. (2010), "Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays", Soils Found., 50(2), 203-214. https://doi.org/10.1002/nag.684.   DOI
23 Zhang, X.F., Ni, Y.S., Song, C.X. and Xu, D. (2020), "Study on large tonnage pile foundation load test system and field test of long rock-socketed pile", Geomech. Eng., 21(6), 565-570. https://doi.org/10.12989/gae.2020.21.6.565.   DOI
24 Basu, P., Prezzi, M., Salgado, R. and Chakraborty, T. (2014), "Shaft resistance and setup factors for piles jacked in clay", J. Geotech. Geoenviron., 140(3), 293-320. https://doi.org/0.1061/(ASCE)GT.1943-5606.0001018.
25 Abu-Farsakh, M., Haque, Md. N. and Chen, Q. (2016), "Field instrumentation and testing to study set-up phenomenon of piles driven into Louisiana clayey soils", Final Report of LTRC Project, Report No. FHWA/LA.15/562.
26 Xiao, J., Wang, C., Ding, T. and Akbarnezhad, A. (2018b), "A recycled aggregate concrete high-rise building: structural performance and embodied carbon footprint", J. Clean Prod., 199, 868-881. https://doi.org/10.1016/j.jclepro.2018.07.210.   DOI
27 Zhou, H., Liu, H. L., Yin, F. and Chu, J. (2018), "Upper and lower bound solutions for pressure-controlled cylindrical and spherical cavity expansion in semi-infinite soil", Comp. Geotech., 103, 93-102. https://doi.org/10.1016/j.compgeo.2018.07.011.   DOI
28 Zou, J.F., Yang, T. and Deng, D.P. (2019), "Field test of the long-term settlement for the post-grouted pile in the deep-thick soft soil", Geomech. Eng., 19(2), 115-126. https://doi.org/10.12989/gae.2019.19.2.115.   DOI
29 Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. https://doi.org/10.12989/gae.2019.19.1.079 .   DOI
30 Axelsson, G. (1998), "Long-term increase in shaft capacity of driven piles in sand", Proceedings of the 4th International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, March: 301-308. https://doi.org/10.1103/PhysRevLett.60.1201.   DOI
31 Borja, R.I. and Kavazanjian, E. (1985), "A constitutive model for the stress-strain-time behaviour of 'wet' clays", Geotechnique, 35(3), 283-298. https://doi.org/10.1680/geot.1985.35.3.283.   DOI
32 Bullock, P.J., Schmertmann, J.H., McVay, M.C. and Townsend, F. C. (2005a), "Side shear setup. I: Test piles driven in Florida", J. Geotech. Geoenviron., 131(3), 292-300. https://doi.org/10.1061/(asce)1090-0241(2005)131:3(292).   DOI
33 Bullock, P.J., Schmertmann, J.H., McVay, M.C. and Townsend, F. C. (2005b), "Side shear setup. II: results from Florida test piles", J. Geotech. Geoenviron., 131(3), 301-310. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(301).   DOI
34 Bowman, E.T. and Soga, K. (2003), "Creep, ageing and microstructural change in dense granular materials", Soils Found., 43(4), 107-117. https://doi.org/10.3208/sandf.43.4_107.   DOI
35 Augustensen, A.H., Andersen. L.V. and Sorensen, C.S. (2005), "Time function for driven piles in clay", Available from the Department of Civil Engineering, Aalborg University, Denmark, Internal report, ISSN: 1398-6465 R0501.
36 Augustesen, A.H., Liingaard, M. and Lade, P.V. (2004), "Evaluation of time-dependent behavior of soils", Int. J. Geomech., 4(3), 137-156. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137).   DOI
37 Axelsson, G. (2002), "A conceptual model of pile set-up for driven piles in non-cohesive soil", Proceedings of the International Deep Foundations Congress, Orlando, Florida, February. https://doi.org/10.1061/40601(256)6.   DOI
38 Doherty, P. and Gavin, K. (2013), "Pile aging in cohesive soils", J. Geotech. Geoenviron., 139(9), 1620-1624. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000884.   DOI
39 Qiao, Y., Ferrari, A., Laloui, L. and Ding, W. (2016), "Nonstationary flow surface theory for modeling the viscoplastic behaviors of soils", Comput. Geotech., 76, 105-119. https://doi.org/10.1016/j.compgeo.2016.02.015.   DOI
40 Potts, D.M. and Martins, J.P. (1982), "The shaft resistance of axially loaded piles in clay", Geotechnique, 32(4), 369-386. https://doi.org/10.1680/geot.1982.32.4.369.   DOI
41 Kou, H.L., Guo, W. and Zhang, M.Y. (2016), "Field study of setup effect in open-ended PHC pipe piles", Mar. Georesour. Geotec., 38(8), 939-946. https://doi.org/10.1080/1064119X.2015.1133742.   DOI
42 Huang, S.M. (1988), "Application of dynamic measurement on long H pile driven into soft ground in Shanghai", Proceedings of the 3rd Conference on Application of Stress-Wave Theory to Pile, Ottawa, Canada.
43 Ko, J., Cho, J. and Jeong, S. (2018), "Analysis of load sharing characteristics for a piled raft foundation", Geomech. Eng., 16(4), 449-461. https://doi.org/10.12989/gae.2018.16.4.449.   DOI
44 Kou, H.L., Chu, J., Guo, W. and Zhang, M.Y. (2017), "Pile load test of jacked open-ended prestressed high-strength concrete pipe pile in clay", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 171(3), 243-251. https://doi.org/10.1680/jgeen.16.00083.   DOI
45 Chen, H.H., Li, L., Li, J.P. and Sun, D.A. (2021a), "A rigorous elastoplastic load-transfer model for axially loaded pile installed in saturated modified Cam-clay soils", Acta Geotechnica, 17(2), 635-651. https://doi.org/10.1007/s11440-021-01248-z.   DOI
46 Li, L., Chen, H.H., Li, J.P. and Sun, D.A. (2021), "An elastoplastic solution to undrained expansion of a cylindrical cavity in SANICLAY under plane stress condition", Comput. Geotech., 132, 103990. https://doi.org/10.1016/j.compgeo.2020.103990.   DOI
47 Randolph, M.F. and Wroth, C.P. (1981), "Application of the failure state in undrained simple shear to the shaft capacity of driven piles", Geotechnique, 31(1), 143-157. https://doi.org/10.1680/geot.1981.31.1.143.   DOI
48 Chen, H.H. and Zhang, L.Y. (2022), "A machine learning-based method for predicting end-bearing capacity of rock-socketed shafts", Rock Mech. Rock Eng., https://doi.org/10.1007/s00603-021-02757-9.   DOI
49 Chou, J. and Yeh, K. (2015), "Life cycle carbon dioxide emissions simulation and environmental cost analysis for building construction", J. Clean. Prod., 101, 137-147. https://doi.org/10.1016/j.jclepro.2015.04.001.   DOI
50 Cui, J.F., Li, J.P. and Zhao, G.W. (2019), "Long-term time-dependent load-settlement characteristics of a driven pile in clay", Comput. Geotech., 112, 41-50. https://doi.org/10.1016/j.compgeo.2019.04.007.   DOI
51 Mo, P.Q. and Yu, H.S. (2018), "Drained cavity expansion analysis with a unified state parameter model for clay and sand", Can Geotech. J., 55(7), 1029-1040. https://doi.org/10.1139/cgj2016-0695.   DOI
52 Sekiguchi, H. (1984), "Theory of undrained creep rupture of normally consolidated clay based on elasto-viscoplasticity", Soils Found., 24(1), 129-147. https://doi.org/10.3208/sandf1972.24.129.   DOI
53 Satake, M. (1989), "Mechanics of granular materials", J. Geogr., 98(6), 798-805. https://doi.org/10.5026/jgeography.98.6_798.   DOI
54 Sekiguchi, H. (1977a), "Rheological characteristics of clays", Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan, January.
55 Sekiguchi, H. (1977b), "Induced anisotropy and time dependency in clays", Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan, January.
56 Terzaghi, K. and Peck, R.B. (1968), Soil mechanics in engineering practice: 2nd Ed., New York, U.S.A.
57 Sekiguchi, H. (1985), "Macrometric approaches-static-intrinsically time dependent constitutive laws of soils", Proceedings of the Discussion Session, 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, U.S.A.
58 Sivasithamparam, N., Karstunen, M. and Bonnier, P. (2015), "Modelling creep behaviour of anisotropic soft soils", Comput. Geotech., 69, 46-57. https://doi.org/10.1016/j.compgeo.2015.04.015.   DOI
59 Skov, R. and Denver, H. (1988), "Time dependence of bearing capacity of pile", Proceedings of the 3rd Conference on Application of Stress-Wave Theory to Pile, Ottawa, Canada.
60 Yang, L. and Liang, R. (2006), "Incorporating set-up into reliability-based design of driven piles in clay", Can. Geotech. J., 43(9), 946-955. https://doi.org/10.1139/t06-054.   DOI
61 Zhou, C., Yin, J.H., Zhu, J.G. and Cheng, C.M. (2005), "Elastic anisotropic viscoplastic modeling of the strain-rate dependent stress-strain behaviour of K0-consolidated natural marine clays in triaxial shear tests", Int. J. Geomech., 5(3), 218-232. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:3(218).   DOI