• Title/Summary/Keyword: Overcharge

Search Result 45, Processing Time 0.031 seconds

Tracking Control of Maximum Power Point of Photovoltaic Array by using the Microprocessor (Microprocessor를 이용한 태양전지의 최대 출력점 추적 제어)

  • Han, K.H.;Jang, K.H.;Kwon, H.;Kim, D.K.;Lee, W.K.;Kang, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.492-495
    • /
    • 1991
  • This paper proposes the microprocessor-based step-up chopper system used for the battery charge from the photovoltaic arrays. The proposed scheme tracks the maximum power point by analyzing the voltage and power phasors which vary as the solar irradiation quantity. In this system, protection for the overcharge and overdischarge in also provided.

  • PDF

Maximum power point tracking controller of solar cell by means of chopper system (쵸퍼 방식에 의한 태양전지의 최대 출력점 제어기의 구성)

  • Chung, Y.T.;Han, K.H.;Kim, Y.J.;Lee, S.H.;Han, N.D.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.482-485
    • /
    • 1991
  • This paper discusses a maximum power point tracking controller (MPPTC) by using chopper with an adjustable input to output voltage. The MPPTC is determined by sensing only the actual voltage from solar cell array. It is simple and continuously tracks the solar cell array maximum power point regardless of the load type. Also, the system obtains protection circuit to protect overcharge and disovercharge against the battery.

  • PDF

A Study on Characteristics of Charging and Discharging for Lead Storage Batteries in Series (직렬 연결된 납축전지의 충방전 전압 특성 연구)

  • Moon, Chae-Joo;Jin, Jong-Soo;Seo, Dong-Choon;Jung, Kwen-Sung;Kim, Tae-Gon;Kim, Young-Gu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.75-79
    • /
    • 2008
  • To control the lead storage batteries it is necessary to consider the characteristics of each battery connected in series. In this study, the charging and discharging characteristics of sealed lead storage batteries 12V/1.2A was investigated one by one through experiments. The results of the experiment shows that one should consider the state of each battery to prevent overcharge or deep discharge. Also, we designed an equipment to measure battery voltages simultaneously using micro-controller. This equipment will be useful for monitoring batteries at PV generation system.

  • PDF

Electrochemical Performances of Lithium-ion Polymer Battery with Polyoxyalkylene Glycol Acrylate-based Gel Polymer Electrolyte (Polyoxyalkylene Glycol Acrylate기 Gel Polymer Electrolyte를 적용한 리튬이온폴리머전지의 전기화학적 특성)

  • Kim, Hyun-Soo;Kim, Sung-Il;Na, Seong-Hwan;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2005
  • In this work, a gel polymer electrolyte (GPE) was prepared using polyoxyalkylene glycol acrylate (POAGA) as a macromonomer LiCoO$_2$/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The ionic conductivity of the GPE was more than 6.2${\times}$10$^{-3}$ S$.$$cm^{-1}$ / at room temperature. The GPE had good electrochemical stability up to 4.5 V vs. Li/Li$^{+}$. POAGA-based cells were showed good electrochemical performances such as rate capability, low-temperature performance, and cycleability. The cells, also, passed a safety test such as the overcharge and nail-penetration test.t.

Development of High-Performance Smart Battery for Notebook PCs with Lithium Ion Battery (리튬이온전지를 이용한 노트북 PC용 고성능 Smart Battery의 개발)

  • 김현수;문성인;윤문수;고병희;김동훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1047-1054
    • /
    • 2003
  • Smart battery pack (SBP) for notebook PCs was developed using a cylindrical-type lithium ion battery. Batteries were connected with three serial and two parallel, the nominal capacity and the maximum load of SBP was 4,000mAh and 4.0A, respectively. The SBP was composed of a protection IC, by which safety of lithium ion batteries is maintained against overcharge, overdischarge and overcurrent, and a smart IC, which calculates the remaining capacity and the remaining run time. In matching test on notebook PC using Battery Mark 4.0, real and smart data of END voltage coincided nearly and LB and LLB signal worked norma]]y. And there were errors of less than 1% between the real and the smart data on the residual capacity in the charge and discharge test.

Overcharge Protection Algorithm for Battery Charger in Electric Vehicle Applications (전기자동차용 급속충전기의 과충전 방지 제어 알고리즘)

  • Jang, Min-ho;You, Doo-young;Ko, Young-cheol;Bang, Lee-seok
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.313-314
    • /
    • 2013
  • 전기자동차용 급속충전기는 배터리의 SOC(State of Charge)가 낮은 경우 전류제어를 통해 배터리를 충전해 준다. 하지만 배터리가 충전되어 SOC가 최대치인 100%에 가까워졌을 경우 과충전을 방지하기 위해 전압제어로 배터리를 충전해 주는데 충전기가 전류제어에서 전압제어로 바뀌면서 과도상태가 발생하게 된다. 본 논문에서는 배터리 충전을 위한 전류제어에서 과충전 방지를 위한 전압제어로 과도상태 없이 변환될 수 있도록 제한적 2중루프 제어를 통한 급속충전기의 과충전 방지 제어 알고리즘을 제안한다. 제안된 알고리즘은 시뮬레이션을 통해 검증하였고 차량용 50kW 급속충전기에 적용되어 제주도 스마트 그리드 실증센터에 설치되었다.

  • PDF

A Power Management Technology for Stand-alone PV System Using Estimation of Operating Power for Variable Message Sign (가변안내표지판의 운영 전력 예측을 통한 독립형 태양광 발전 시스템용 전력 관리 기술)

  • Lim, Se-Mi;Lee, Ji-Hoon;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1140-1147
    • /
    • 2012
  • This paper proposes the power management technology for stand-alone PV system to extend installation environment and coverage. The proposed power management technology in this paper can protect battery safeness from overcharge/discharge with keeping the proper SOC(State of Charge) and extend using time of system through estimation of operating power. The proposed power management technology in this paper is applied to Infra-free Variable Message Sign. And performance of power management technology in this paper was verified using simulation scenario.

Preliminary Design of a Power Control and Distribution Unit for a Small LEO Satellite Application (소형 저궤도 위성적용을 위한 전력조절분배기 예비설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Baek;Jang, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1438-1440
    • /
    • 2005
  • A power control and distribution unit(PCDU) plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. In this work, we perform the preliminary design of a PCDU scheme for the small LEO Satellite applications. The main constitutes of the PCDU are the battery interface module, the auxiliary supply modules, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, internal converter modules for regulated bus voltage generation. and instrument power distribution modules.

  • PDF

Smart Battery System of Lithium ion Batteries (리튬이온전지의 Smart Battery System)

  • Kim Hyun-Soo;Moon Seong-In;Yun Mun-Soo;Ko Beyng-Hi;Park Sang-Kun;Shin Dong-O;Yoo Seong-Mo;Lee Seung-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.132-137
    • /
    • 2001
  • Recently, the demand for notebook PC with lithium ion batteries has steadily increased and consumers require them to adopt a SBP(smart battery pack) able to predict the remaining capacity and the run time of batteries precisely. The SBP is composed of a protection If, by which safety of lithium ion batteries is maintained against overcharge, overdischarge and overcurrent, and a smart IC, which calculates the remaining capacity and the remaining run time. The protection IC shut abmormal current down by using overcharge/overdischarge FET. A SBS(smart battery system) is composed of a system host, a smart battery and a smart battery charger. The smart ICs for SBP will be required to provide a low cost, low current consumption and small size. There will need to develop a microcomputer control type IC and an optimum algorism which is able to predict the residual capacity and the residual run time precisely. SBS will apply to many kinds of industry fields such as an electric bicycle, an electric vehicle, a load levelling and a military.

Power System Design for Next Generation LEO Satellite Application (차세대 저궤도 소형위성 적용을 위한 전력시스템 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jan, Sung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF