• 제목/요약/키워드: Overall Equilibrium

검색결과 204건 처리시간 0.026초

Removal of Heavy metal Ions from Aqueous Solutions by Adsorption on Magadiite

  • 정순용;이정민
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권2호
    • /
    • pp.218-222
    • /
    • 1998
  • Removal of Cd(Ⅱ), Zn(Ⅱ) and Cu(Ⅱ) from aqueous solutions using the adsorption process on magadiite has been investigated. It was found that the removal percentage of metal cations at equilibrium increases with increasing temperature, and follows the order of Cd(Ⅱ) > Cu(Ⅱ) > Zn(Ⅱ). Equilibrium modeling of adsorption showed that the adsorptions of Cd(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) were fitted to Langmuir isotherm. Kinetic modeling of the adsorption showed that first order reversible kinetic model fitted to experimental data. From kinetic model and equilibrium data, the overall rate constant (k) and the equilibrium constant (K) for the adsorption process were calculated. The overall rates of adsorption of metal ions follow the order of Cd(Ⅱ) > Cu(Ⅱ) > Zn(Ⅱ). From the results of thermodynamic analysis, standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) of adsorption process were calculated.

Benzamidoxime에 의한 중금속의 추출특성 (Characteristics of Heavy Metal Extraction by Benzamidoxime)

  • 이상훈;윤영삼
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.371-377
    • /
    • 1999
  • The effects of benzamidoxime concentration, solvents and temperature on the degree of metal extraction were investigated to apply benzamidoxime to heavy metal extraction as chelating agent. Benzamidoxime was synthesized from benzonitrile with hydroxylamine. The chemical structure of benzamidoxime was identified. The degree of heavy metal extraction was increased with increasing the concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an effective extractant for Cu-extraction by benzene or chloroform. The relationship between the thermodynamic overall equilibrium constant and absolute temperature was expressed as log K = -5.56 + $855T^{-1}$. Heat of extraction, $$\Delta$H^0$ were calculated from overall equilibrium constants at various temperature and the extraction reactionby benzamidoxime was found to be exthothermic.

  • PDF

전력시장 입찰함수모형에서 입찰 파라미터 선택에 관한 연구 (A Study on the Selection of a Bidding Parameter at the Bidding Function Model in an Electricity Market)

  • 조철희;이광호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권11호
    • /
    • pp.630-635
    • /
    • 2004
  • Generation companies(Genco) submit the supply functions as a bidding function to a bid market in a competitive electricity market. The profits of Gencos vary in accordance with the bid functions, so the selection of a bidding function plays a key role in increasing their profits. In order to get a profitable bidding function which is usually linear, it is required to modify adequately the intersection and the slope of a linear supply function. This paper presents an analysis of the selection of the supply function from the viewpoint of Nash equilibrium(NE). Four types of bidding function parameters are used for analizing the electricity market. The competition of selecting bidding parameters is modeled as two level games in this research. One is a subgame where a certain type of parameters is given and the players compete to select values of the underlying parameters. The other is an overall game where the players compete to select a profitable type among the four types of parameters. The NEs in both games are computed by an using analytic method and a payoff matrix method. It is verified in case studies for the NE of overall game to satisfy the equilibrium condition.

공급함수 입찰모형에서 입찰파라미터 선택에 관한 연구 (A Study on the Selection of a Bidding Parameter at the Bidding Function Model in an Electricity Market)

  • 조철희;최석근;이광호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.710-712
    • /
    • 2004
  • Generation companies(Genco) submit the supply functions as a bidding function to a bid market in a competitive electricity market. The profits of Gencos vary in accordance with the bid functions, so the selection of a bidding function plays a key role in increasing their profits. This paper presents an analysis of the selection of the supply function from the viewpoint of Nash equilibrium(NE). Four types of bidding function parameters are used for analizing the electricity market. The competition of selecting bidding parameters is modeled as subgame and overall game in this research. The NEs in both game are computed by using analytic method and payoff matrix method. It is verified in case studies for the NE of overall game to satisfy the equilibrium condition.

  • PDF

아파트의 가격형성 메커니즘에 관한 연구 (A Study on the Equilibrium-Pricing Mechanism of Apartment)

  • 정재영;윤태권
    • 한국건축시공학회지
    • /
    • 제8권6호
    • /
    • pp.65-74
    • /
    • 2008
  • The aim is to get comprehensive view point for the price of apartment. Apartment construction cost is the sun of land cost and building cost. Land price reflects the value of location where building stands. When the gap between price and affordability is narrow enough, effective demand promote apartment construction. The today's trends of rising price, which began in apartment housing, spreads to real estates market and finally overall consumer price. Problem is that price is decided only by supplier's interest. Equilibrium-pricing is common process in housing market. However it is important to review hedonic price and the factor of housing services and focused on the affordability of demanders. AHP analysis was used to study real needs and preference of demanders and dealt with 200 interviewees with brief checklists. We found that social factor is more important than building cost or site development. Especially location of apartment is most important to affect environment quality and accessibility to facilities.

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots

  • Lee, Seung-Mok;Kim, Hanguen;Lee, Serin;Myung, Hyun
    • Advances in robotics research
    • /
    • 제1권1호
    • /
    • pp.41-59
    • /
    • 2014
  • This paper deals with the problem of steering a group of mobile robots along a reference path while maintaining a desired geometric formation. To solve this problem, the overall formation is decomposed into numerous geometric patterns composed of pairs of robots, and the state of the geometric patterns is defined. A control algorithm for the problem is proposed based on the Nash equilibrium strategies incorporating receding horizon control (RHC), also known as model predictive control (MPC). Each robot calculates a control input over a finite prediction horizon and transmits this control input to its neighbor. Considering the motion of the other robots in the prediction horizon, each robot calculates the optimal control strategy to achieve its goals: tracking a reference path and maintaining a desired formation. The performance of the proposed algorithm is validated using numerical simulations.

PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network

  • Harikala, Thoka;Narayana, Ravinutala Satya
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.17-30
    • /
    • 2021
  • At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies-generalized Nash game and cooperative and noncooperative game theory.

Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Water

  • Song Hi Lee;Gyeong Keun Moon;Sang Gu Choi
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.315-322
    • /
    • 1991
  • In a recent $paper^1$ we reported equilibrium (EMD) and non-equilibrium (NEMD) molecular dynamics simulations of liquid argon using the Green-Kubo relations and NEMD algorithms to calculate the thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity. The overall agreement with experimental data is quite good. In this paper the same technique is applied to calculate the thermal transport coefficients of liquid water at 298.15 K and 1 atm using TIP4P model for the interaction between water molecules. The EMD results show difficulty to apply the Green-Kubo relations since the time-correlation functions of liquid water are oscillating and not decaying rapidly enough except the velocity auto-correlation function. The NEMD results are found to be within approximately ${\pm}$30-40% error bars, which makes it possible to apply the NEMD technique to other molecular liquids.