• 제목/요약/키워드: Overall Buckling

검색결과 136건 처리시간 0.024초

Experiments on locally dented conical shells under axial compression

  • Ghazijahani, Tohid Ghanbari;Jiao, Hui;Holloway, Damien
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1355-1367
    • /
    • 2015
  • Steel conical shells have long been used in various parts of different structures. Sensitivity to the initial geometrical imperfection has been one of the most significant issues on the stability of these structures, which has made them highly vulnerable to the buckling. Most attention has been devoted to structures under normal fabrication related imperfections. Notwithstanding, the challenges of large local imperfections - presented herein as dent-shaped imperfections - have not been a focus yet for these structures. This study aims to provide experimental data on the effect of such imperfections on the buckling capacity of these shells under axial compression. The results show changes in the buckling mode and the capacity for such damaged thin specimens as is outlined in this paper, with an average overall capacity reduction of 11%.

충격하중을 받는 Euler기둥의 동적좌굴 해석 (Dynamic Instability Analysis of Euler Column under Impact Loading)

  • 김형열
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.187-197
    • /
    • 1996
  • Explicit 직접적분법 알고리듬을 사용하여 Euler기둥의 동적 좌굴거동을 해석할 수 있는 수치해석법을 제시하였다. 평면뼈대 유한요소를 기하학적 비선형 거동과 전체좌굴의 영향을 고려할 수 있도록 보의 대변위 이론으로부터 유도하였고, central difference method를 바탕으로 해석 알고리듬을 개발하였다. 다양한 형상, 크기, 재하시간을 갖는 충격하중에 대하여 Euler기둥의 동적좌굴거동과 고유치 문제를 해석하였다. 수치해석 예제를 통하여 본 연구의 결과를 검증하였다.

  • PDF

확장계수를 적응한 기둥의 유효좌굴길이 계수 산정 (Evaluation of Effective Length Factor by Using an Amplification Factor)

  • 최동호;유훈;신재인;김성연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.369-374
    • /
    • 2007
  • For a stability design of steel frames, AISC-LRFD specification recommend to use Alignment Chart and story-based methods in order to determine an effective budding length. Recently, elastic buckling analysis, which is the method that calculate the effective length of members using eigenvalue of the overall structure, has been widely used in practical design of steel frames because this method can be performed effectively and automatically by computers. However, it can in some cases lead to unexpectedly large effective length in column having small axial forces. Therefore, this paper propose a method using elastic buckling analysis, which estimate a proper effective buckling length for all members having a small axial force. For verification of proposed method, it is compared with system based approach and stiffness distribution factor method. As a result, proposed method can rationally solve a problem in some case of column having small axial force. Also, adoption range for proposed method is established.

  • PDF

Direct strength method for high strength steel welded section columns

  • Choi, Jong Yoon;Kwon, Young Bong
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.509-526
    • /
    • 2018
  • The direct strength method adopted by the AISI Standard and AS/NZS 4600 is an advanced design method meant to substitute the effective width method for the design of cold-formed steel structural members accounting for local instability of thin plate elements. It was proven that the design strength formula for the direct strength method could predict the ultimate strength of medium strength steel welded section compressive and flexural members with local buckling reasonably. This paper focuses on the modification of the direct strength formula for the application to high strength and high performance steel welded section columns which have the nominal yield stress higher than 460 MPa and undergo local buckling, overall buckling or their interaction. The resistance of high strength steel welded H and Box section columns calculated by the proposed direct strength formulae were validated by comparison with various compression test results, FE results, and predictions by existing specifications.

Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members

  • Wu, Jinzhi;Zheng, Jianhua;Sun, Guojun;Chang, Xinquan
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.11-28
    • /
    • 2022
  • This paper considers the combination of cyclic and axial loads to investigate the hysteretic performance of H-section 6061-T6 aluminum alloy members. The hysteretic performance of aluminum alloy members is the basis for the seismic performance of aluminum alloy structures. Despite the prevalence of aluminum alloy reticulated shells structures worldwide, research into the seismic performance of aluminum alloy structures remains inadequate. To address this deficiency, we design and conduct cyclic axial load testing of three H-section members based on a reliable testing system. The influence of slenderness ratios and bending direction on the failure form, bearing capacity, and stiffness degradation of each member are analyzed. The experiment results show that overall buckling dominates the failure mechanism of all test members before local buckling occurs. As the load increases after overall buckling, the plasticity of the member develops, finally leading to local buckling and fracture failure. The results illustrate that the plasticity development of the local buckling position is the main reason for the stiffness degradation and failure of the member. Additionally, with the increase of the slenderness ratio, the energy-dissipation capacity and stiffness of the member decrease significantly. Simultaneously, a finite element model based on the Chaboche hybrid strengthening model is established according to the experiment, and the rationality of the constitutive model and validity of the finite element simulation method are verified. The parameter analysis of twenty-four members with different sections, slenderness ratios, bending directions, and boundary conditions are also carried out. Results show that the section size and boundary condition of the member have a significant influence on stiffness degradation and energy dissipation capacity. Based on the above, the appropriate material constitutive relationship and analysis method of H-section aluminum alloy members under cyclic loading are determined, providing a reference for the seismic design of aluminum alloy structures.

Improving the behavior of buckling restrained braces through obtaining optimum steel core length

  • Mirtaheri, Masoud;Sehat, Saeed;Nazeryan, Meissam
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.401-408
    • /
    • 2018
  • Concentric braced frames are commonly used in steel structures to withstand lateral forces. One of the drawbacks of these systems is the possibility that the braces are buckled under compressive loads, which leads to sudden reduction of the bearing capacity of the structure. To overcome this deficiency, the idea of the Buckling Restrained Brace (BRB) has been proposed in recent years. The length of a BRB steel core can have a significant effect on its overall behavior, since it directly influences the energy dissipation capability of the member. In this study, numerical methods have been utilized for investigation of the optimum length of BRB steel cores. For this purpose, BRBs with different lengths placed into several two-dimensional framing systems with various heights were considered. Then, the Response History Analysis (RHA) was performed, and finally, the optimum steel core length of BRBs and its effect on the responses of the overall system were investigated. The results show that the shortest length where failure does not occur is the best length that can be proposed as the optimum steel core length of BRBs. This length can be obtained through a formula which has been derived and verified in this study by both analytical and numerical methods.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

삼각형 네트워크를 갖는 단층 및 복층 구형 스페이스 프레임 구조물의 좌굴특성에 관한 비교 연구 (A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Spherical Space Frame Structure with Triangular Network Pattern)

  • 이호상;정환목;권영환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.251-257
    • /
    • 1998
  • Spherical space frame structure with triangular network pattern, which has the various characteristics for the mechanic property, a funtional property, an aesthetic property and so on, has often been used as one of the most efficient space structures. It is expected that this type will be used widely in large-span structural roofs. But because this structure is made of network by combination of line elements there me many nodes therefore, the structure behavior is very complicated and there can be an overall collapse of structure by buckling phenomenon if the external force reaches a limitation. This kind of buckling is due to geometric shape, network pattern, the number of layer and so on, of structure. Therefore spherical space frame with triangle network pattern have attracted many designers and researchers attention all over the world. The number of layer of space frame is divided in to the simgle, double, multi layer. That is important element which is considered deeply in the beginning of structural design. The buckling characteristics of single-layer model and double-layer model for the spherical space frame structure with triangular network pattern are evaluated and the buckling loads of these types are compared with investigation their structural efficiency in this study.

  • PDF

용접된 보강판의 압축 최종 강도의 간이 해석법 (A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates)

  • 장창두;서승일
    • 대한조선학회논문집
    • /
    • 제30권2호
    • /
    • pp.141-154
    • /
    • 1993
  • 본 논문에서는 주변 단순 지지된, 용접된 편면 보강판의 압축 최종 강도를 구하는 간략한 방법을 제안하고자 한다. 우선, 용접에 의한 변형 및 잔류응력과 같은 초기결함을 간략한 방법으로 추정하고, 이 초기결함이 존재하는 보강판의 붕괴 양식을 가정하여, 각 양식에 대해 최종 강도를 구하고, 여러 붕괴 하중에 때해 최소치를 택함으로 보강판의 붕괴 하중을 얻는다. 보강판이 최종 강도 상태에 달하기까지 붕괴 과정을 다음과 같이 가정한다. (1) 보강판의 전체 좌굴$\rightarrow$보강재의 굽힘에 의한 전체 붕괴 (2) 판재의 국부 좌굴$\rightarrow$판재의 국부 붕괴$\rightarrow$보강재의 전단면 항복에 의한 전체 붕괴 (3) 판재의 국부 좌굴$\rightarrow$보강재의 굽힘에 의한 전체 붕괴 (4) 판재의 국부 좌굴$\rightarrow$판재의 국부 붕괴$\rightarrow$보강재의 비틂 변형(tripping)에 의한 전체 붕괴 붕괴 하중 계산을 위해 Rayleigh-Ritz 법에 기초한 탄소성 대변형 해석을 수행하고, 소성 붕괴선을 가정한 소성 해석을 수행하여 탄성 해석선과 소성 해석선의 교점을 최종 강도로 택한다. 본 방법을 비선형 유한요소법과 비교해 보면 극히 짧은 계산 시간에 양호한 결과를 산출한다는 것을 알 수 있다. 본 방법에 의한 해석 결과를 통해 판재의 국부 거동에 미치는 보강재의 비틂 강성의 효과를 고찰하였고, 보강재의 굽힘에 의한 전체붕괴와 비틂 변형(tripping)에 의한 전체 붕괴의 기준이 되는 보강재의 형상을 제시할 수 있었다.

  • PDF