• Title/Summary/Keyword: Over-excitation

Search Result 295, Processing Time 0.027 seconds

Variable Rate IMBE-LP Coding Algorithm Using Band Information (주파수대역 정보를 이용한 가변률 IMBE-LP 음성부호화 알고리즘)

  • Park, Man-Ho;Bae, Geon-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.576-582
    • /
    • 2001
  • The Multi-Band Excitation(MBE) speech coder uses a different approach for the representation of the excitation signal. It replaces the frame-based single voiced/unvoiced classification of a classical speech coder with a set of such decision over harmonic intervals in the frequency domain. This enables each speech segment to be a mixture of voiced and unvoiced, and improves the synthetic speech quality by reducing decision errors that might occur on the frame-based single voiced and unvoiced decision process when input speech is degraded with noise. The IMBE-LP, improved version of MBE with linear prediction, represents the spectral information of MBE model with linear prediction coefficients to obtain low bit rate of 2.4 kbps. In this Paper, we proposed a variable rate IMBE-LP vocoder that has lower bit rate than IMBE-LP without degrading the synthetic speech quality. To determine the LP order, it uses the spectral band information of the MBE model that has something to do with he input speech's characteristics. Experimental results are riven with our findings and discussions.

  • PDF

Line Profiles of the Saturn Ring Planetary Nebula

  • Lee, Seong-Jae;Hyung, Siek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.115.1-115.1
    • /
    • 2011
  • We analyzed the line profiles of the planetary nebula (PN) NGC 7009 secured with the Keck I HIES and BOES's spectral data. The 5 positions were taken over the nebular image, 4 points on the bright rim plus 1 point at the central position. The covered spectral wavelength range was $3250{\AA}-8725{\AA}$ in these observations. We decomposed the lines of HI, HeI, HeII, CII, NIII, [ClIII], [NII], [OII], [OIII], [SII], [SIII], [ClIII], and [ArIII] using the IRAF and StarLink/Dipso. After correcting the Earth's movement and the PN's radial velocities, -48.6 & -48.9 km/s, respectively, for the Keck & BOES, we produced the line profiles in a velocity scale. The zero velocity at each line profile clearly indicates which part of the components is approaching or receding, giving a general information of the kinematical structure. Almost all of the low-to-medium excitation lines, such as [NII], [SII], [O III], and [ArIII], secured at the central position and four positions along the major & minor axes, showed 3 components, double peak + a wide wing component, suggesting the fast outflow structures are present. The overall geometry is a prolate shell which also has a fainter outer shell in the halo zone, but there appears to be some peculiar sub-structures inside the main shell. The high excitation He I, HeII, NIII lines which might be formed close to the inner boundary of the shell show unusual features, completely different from the other lines. The HeII and these high excitation lines may be indicative of a relative recent fast outflow from the central star and the permitted lines such as NIII might be affected by the innermost structure. We discuss a possible presence of a jet-like fast outflow structure in an out-flow axis different from the main axis of the spheroid shell.

  • PDF

Combination resonances of porous FG shallow shells reinforced with oblique stiffeners subjected to a two-term excitation

  • Kamran Foroutan;Liming Dai;Haixing Zhao
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.391-406
    • /
    • 2024
  • The present research investigates the combination resonance behaviors of porous FG shallow shells reinforced with oblique stiffeners and subjected to a two-term excitation. The oblique stiffeners considered in this research reinforce the shell internally and externally. To model the stiffeners, Lekhnitskii's smeared stiffeners technique is utilized. According to the first-order shear deformation theory (FSDT) and stress functions, a nonlinear model of the oblique stiffened shallow shell is established. With regard to the FSDT and von-Kármán nonlinear geometric assumptions, the stress-strain relationships for the present shell system are developed. Also, in order to discretize the nonlinear governing equations, the Galerkin method is implemented. To obtain the required relations for investigating the combination resonance theoretically, the method of multiple scales is applied. For verifying the results of the present research, generated results are compared with previous research. Additionally, a comparison with the P-T method is conducted to increase the validity of the generated results, as this method has illustrated advantages over other numerical methods in terms of accuracy and reliability. In this method, the piecewise constant argument is used jointly with the Taylor series expansion, which is why it is named the P-T method. The effects of stiffeners with different angles, and the effects of material parameters on the combination resonance behaviors of the present system are addressed. With the findings of this research, researchers and engineers in this field may use them as benchmarks for their design and research of porous FG shallow shells.

Experimental identification of nonlinear model parameter by frequency domain method (주파수영역방법에 의한 비선형 모델변수의 실험적 규명)

  • Kim, Won-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.458-466
    • /
    • 1998
  • In this work, a frequency domain method is tested numerically and experimentally to improve nonlinear model parameters using the frequency response function at the nonlinear element connected point of structure. This method extends the force-state mapping technique, which fits the nonlinear element forces with time domain response data, into frequency domain manipulations. The force-state mapping method in the time domain has limitations when applying to complex real structures because it needd a time domain lumped parameter model. On the other hand, the frequency domain method is relatively easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of each substurcture. Since this mehtod is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude bot also selecting excitation frequency domain method has some advantages over the classical force-state mapping technique in the number of data points needed in curve fit and the sensitivity to response noise.

Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper (지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Comparison of iron loss characteristics between thin-gauged grain-oriented 3% Si-Fe sheets and commercial 0.3 mm-thick grain-oriented electrical sheets (극박 방향성 규소강판과 상용 방향성 규소강판의 철손특성 비교)

  • Cho, Seong-Soo;Kim, Sang-Beom;Soh, Joon-Young;Chae, U-Gyu;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2009_2010
    • /
    • 2009
  • Thin-gauged 3% Si-Fe sheets having a high magnetic induction of over 1.9 T have been developed for the purpose of applications where operation frequency is higher than power frequency. In order to clarify requirements of iron loss characteristics for the applications, iron loss characteristics of the newly developed strip were investigated by iron loss separation method and were compared with those of commercially produced 0.3 mm-thick electrical sheets. In case of relatively high excitation induction(1.7 T) and low frequency(60 Hz), reducing hysteresis loss is effective to decrease total iron loss. In case of relatively low excitation induction(1.0 T) and high frequency(1 kHz), reducing eddy-current loss is effective by decreasing thickness and grain size to improve total iron loss.

  • PDF

An Analysis of Power System Stability(PSS) Effect with 135MVA Hydro Generator (135MVA 수력 발전기의 전력 시스템 안정화 장치 적용 효과 분석)

  • Ok, Yeon-Ho;Lee, Eun-Woong;Byun, Ill-Hwan;Oh, Sueg-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1100-1104
    • /
    • 2009
  • As national power consumption every year increases, the power plant which is in the process of planning tries to establish high-capacity generator. The power system tends to become a large size. With the progress of electronic components, the control systems of the generator have been digitalized and rapid-response control system is possible. However, the minute frequency vibration of grid occurred with the effect of rapid-response control system. To solve these problem, PPS(Power System Stability) has been introduced since 2004, and it has being installed and applied to the thermal and nuclear power plant which are high-capacity, over 800MVA. However the minute frequency vibration is gradually changed to the bigger frequency vibration by fast-action control system, and this regional frequency fluctuation might be diffused wide area. Therefore, it is applied to the hydro generator which is small with fast-action governor system, and it is necessary to control the minute frequency vibration to prevent to diffuse. In this paper, the effect will be proved by establishing PSS on the Hydro-Generator which has both digital excitation and governor system for the first time in Korea.

Development of MR Mount for Vibration Control of Marine Diesel-Generator Set (박용 발전기세트 진동 제어용 MR 마운트 개발)

  • Kang, Ok-Hyun;Kim, Won-Hyun;Joo, Won Ho;Park, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.381-385
    • /
    • 2014
  • This paper investigates the magneto-rheological(MR) mount for the marine diesel-generator(D/G) sets. Sometimes, significant vibrations over the allowable limit are observed on the D/G sets due to their huge excitation forces. Because the severe vibration can lead to structural damages to the D/G sets, it should be reduced below the limit. Although passive mounts with rubber isolators are usually used, the vibration reduction performance is not always sufficient. In addition, expecting that the vibration levels required by customers will get more severe, vibration reduction devices need to be developed. To the aim, the flow mode type of MR mount has been designed. Especially, the annular-radial configuration was adopted to enhance the damping force within the restricted space. The geometry of the mount has been optimized to obtain the required damping force and the magnetic field analysis has been carried out using ANSYS APDL. To verify the performance of the developed MR mount, an excitation test was conducted. In addition, they were applied to a medium-speed diesel generator and it was verified that about 40% of vibration reduction was yielded.

  • PDF

A Study on the Protective Coordination of Generator Overexcitation and Overvoltage Relay (발전기 과여자 및 과전압 계전기 보호협조에 관한 연구)

  • Park, Ji-Kyung;Kim, Kwnag-Hyun;Kim, Chul-Hwan;Lyu, Young-Sik;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1187-1194
    • /
    • 2017
  • After North American wide area black out on August 14, 2003, various studies have been conducted to find out the reason of the disaster. One of main reasons was misoperation of generator protection system. Since then, protective coordination between generator protection system and excitation system controls has been hot issue among electrical engineers. Among various generator protection relays, in this paper, we focused on generator overvoltage and overexcitation relay, which protect the over-flux condition of the generator. Thus, at first, we modeled the generator overvoltage, overexcitation relay and detailed power system including excitation system, governor and etc., based on actual field data. And then, we reviewed the protective coordination of generator overvoltage and overexcitation relay using electromagnetic transient program. In addition, we discussed the protective coordination method for redundant protection relays in both automatic voltage regulator and generator side.

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.