• Title/Summary/Keyword: Over load

Search Result 2,144, Processing Time 0.035 seconds

Evaluation of Contamination Level of the Sediments from Chusori and Chudong Areas in Daechung Reservoir (대청호 추소 및 추동 수역 퇴적물의 오염도 평가)

  • Oh, Kyoung-Hee;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • In order to analyze the contamination level of sediment samples taken from Chusori and Chudong areas in Daechung Reservoir, the particle size and concentrations of organics and nutrients were analyzed and phosphorus fractionation analysis was conducted. The average fraction of silt-sized particles was 92% in the sediments taken from Chudong area and Chusori area at the site adjacent to main current, which was higher than that from the upper Chusori area. The concentrations of total phosphorus in the sediments at Chusori and Chudong area were 999 (${\pm}98$) and 1,123 (${\pm}119$) mg/kg sediment, respectively. The fractions of autochthonous phosphorus, which can be readily eluted by change of environmental conditions, were much higher than those of allochthonous phosphorus, indicating the internal load can contribute the eutrophication in these areas. The concentrations of total nitrogen were over 5,600 mg/kg sediment in all samples, which is the guideline of Contamination Assessment of River and Lake Sediments of the Ministry of Environment, indicating the contamination level of total nitrogen is serious in the sediments. It is concluded that the countermeasures to manage the quality of sediments are required to improve the water quality in the Daechung Reservoir.

A Study on Brace-height Ratio for Seismic Retrofit of School Building (학교 건축물의 내진 보강을 위한 가새 - 높이비에 관한 연구)

  • Lee, Hwa-Jung;Byon, Dae-Kun;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • The recent earthquake in Korea caused large and small damages to many school building. School building is an important building that is used as a shelter in the event of disaster. Among the seismic retrofit methods, the internal steel braced frame type method is used for its relatively easy construction and excellent performance. In this study, the maximum shear force and displacement were compared and examined by applying the brace frame to existing concrete school buildings. As a result, we verified the adequacy of the analytical model and compared and examined the effect of brace-height ratio on the span of the existing school buildings. The adequacy of the maximum shear force and displacement relationship can be confirmed in the model with a length of 0.3. In addition, seismic frame was applied to the actual non-seismic reinforced concrete school building, and the seismic performance was evaluated by nonlinear static analysis(Push-over analysis) according to the ratio of brace-height. As a result, the increase of the brace-height according to the brace-height ratio has the effect of increasing the maximum shear force and maximum load at the performance point. But the collapse of the braced frame due to the increase in the lateral stiffness occurred, indicating that seismic retrofit according to the proper brace-height is necessary. Therefore, in the seismic retrofit design of brace frame of existing school building, it is necessary to select the proper brace-height after retrofit analysis according to the brace-height ratio.

Dislodgement resistance of modified resin-bonded fixed partial dentures utilizing tooth undercuts: an in vitro study

  • Doh, Re-Mee;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 2009
  • STATEMENT OF PROBLEM. Over the years, resin-bonded fixed partial dentures (RBFPDs) have gone through substantial development and refinement. Several studies examined the biomechanics of tooth preparation and framework design in relation to the success rate of RBFPDs and considered retention and resistance form essential for increase of clinical retention. However, these criteria required preparations to be more invasive, which violates not only the original intentions of the RBFPD, but may also have an adverse effect on retention due to loss of enamel, an important factor in bonding. PURPOSE. The object of this in vitro study was to compare the dislodgement resistance of the new types of RBFPDs, the conventional three-unit fixed partial denture, and conventional design of RBFPD (Maryland bridge). MATERIAL AND METHODS. Fifty resin mandibular left second premolars and second molars were prepared on dentiforms, according to the RBFPD design. After model fabrication (five group, n = 10), prostheses were fabricated and cemented with zinc phosphate cement. After cementation, the specimens were subjected to tensile loading at a cross head speed of 4 mm/min in a universal testing machine. The separation load was recorded and analyzed statistically using one-way analysis of variance followed by Duncan's multiple range test. RESULTS. Group V, the pin-retained RBFPDs, had the highest mean dislodgement resistance, whereas specimens of group II, the conventional RBFPDs, exhibited a significantly lower mean dislodgement resistance compared to the other 4 groups (P <.05). There were no significant differences between group I, III, and IV in terms of dislodgement resistance (P>.05). Group V had the highest mean MPa (N/$mm^2$) (P <.05). There was no significant difference between groups I, II, III and IV (P > .05). CONCLUSION. Within the limits of the design of this in vitro study, it was concluded that: 1. The modified RBFPDs which utilizes the original tooth undercuts and requires no tooth preparation, compared with the conventional design of RBFPDs, has significantly high dislodgement resistance (P < .05). 2. The modified RBFPDs which utilizes the original tooth undercuts and requires minimal tooth preparation, compared with the conventional FPDs, has significantly no difference in retention and dislodgement resistance)(P>.05). 3. The pin-retained FPDs showed a high dislodgement resistance compared to the conventional three-unit FPDs (P<.05).

The Changes in Goals and Contents of Geography Education according to the Structural Change of Integration in the Korean Social Studies Curriculum: The Case of the Middle School (우리나라 사회과교육과정의 통합구조 변화에 따른 지리교육의 목표와 내용 변화: 중학교를 중심으로)

  • Park, Sunmee
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.6
    • /
    • pp.935-955
    • /
    • 2016
  • This study aims to analyze the changes of goals and contents of middle school geography education following up the changes in the Korean social studies curriculum over time. The main findings are as follows. First, From the Syllabus period to the Third Curriculum, geography education, history education, general social studies education in the middle school social studies were directed and managed independently. However from the 4th to the 7th Curriculum, the demand for the virtual integration in middle school social studies increased sharply. Since 2009 revision, social studies suffered an identity crisis as integrated subject matter because history education was separated from the social studies and interdisciplinary units were abolished. In spite of much criticism, however, an odd form of social studies integrating geography and general social studies still remains. Second, the stronger the demand for the social studies integration in middle school, students' social studies learning load had become heavier due to severe competition with other areas to ensure more portion in the integrated structure of social studies. Since geography education did not reflect the new tendency of the geography in the integrated structure of middle school social studies, the gap between the geography and geography education has increased and knowledges of geography growing became separated from students' experience. In conclusion, the integrated structure of social studies in the middle school hindered the geography education development as it limited the autonomy of geography education in terms of curriculum development.

  • PDF

Implementation of RTP/RTCP for Teleconferencing System and Analysis of Quality-of-Service using Audio Data Transmission (영상회의 시스템을 위한 RTP/RTCP 구현 및 오디오 데이터 전송을 위용한 QoS 분석)

  • Kang, Min-Gyu;Hwang, Seung-Koo;Kim, Dong-Kyoo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3047-3062
    • /
    • 1998
  • This paper deseribes the desihn and the implementation of the Realtime Transport Protocol(RTP)/ Rdaltime Control Protocol(RTCP) (RFC 1889,1890) that is used to transmit the audio/video data to any destination and to feedback the Quality of Service (QoS) information of the received media data to the sender, in the teleconferencing systems proposed by ITU-T. These protocols are implemented with multi thead technique and run on top of UDP/IP-Multicast through the socket interface as the underlying protocol. The upper layer is impelmented such that in can be accessed by the H245 comference control protocol. The RTP packetizes the digitized audio/video data from the encoder info a fixed format, and multieast to the participants. The RTCP monitors RTP packets and extracts the QoS values from it such as round-trip delay, jiter and packet loss to form RTCP packets and non periokically sends them to the sender site. In this Paper, we also descritx the study of measurement and analysis for QoS factors that observed on performing teleconferencing system over Internet. The results from this experiment is indicate that RTT and Jitter value are acceptable even entwork load is high. However, it appears that packet loss rate is high in daytime and most losses periods have length one or two.

  • PDF

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Determination of EMCs for Rainfall Ranges from Transportation Landuses (교통관련 토지이용에서의 강우계급별 EMC 산정)

  • Lee, So-Young;Maniquiz, Marla C.;Choi, Ji-Yeon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2009
  • The contribution of pollutant loadings from non-point source (NPS) to the four major rivers in Korea exceeded 22~37 % of the total loadings in 2004 and is expected to reach 60 % in 2020. Most of NPS loadings are coming from urban areas, especially from paved areas. Because of high imperviousness rate, many types of NPS pollutant are accumulating on the surface during dry periods. The accumulated pollutants are wash-off during a storm and highly degrading the water quality of receiving water bodies. For this reason, the Korean Ministry of Environment (MOE) developed the Total Maximum Daily Load (TMDL) program to protect the water quality by managing the point source and NPS loadings. NPS has high uncertainties during a storm because of the characteristics of rainfall and watershed areas. The rainfall characteristics can affect on event mean concentrations (EMCs), mass loadings, flow rate, etc. Therefore, this research was performed to determine EMCs for rainfall ranges from transportation landuses such as road and parking lot. Two sites were monitored over 45 storm events during the 2006/06 through 2008/10 storm seasons. Mean TSS EMCs decrease as rainfall ranges increase and highest at less than 10mm rainfall. The results of this study can be used to determine the efficient scale of BMP facility considering specific rainfall range.

  • PDF

The Need for Weight Optimization by Design of Rolling Stock Vehicles

  • Ainoussa, Amar
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.124-126
    • /
    • 2009
  • Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimized strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: $\bullet$ material selection to best contribute to the intended functionality and performance $\bullet$ design and design optimization to secure the intended functionality and performance $\bullet$ weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against tire and smoke, small and large composite materials made components are also found in greater quantities in today's railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an "overdesigned" bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

  • PDF

Effect of Hot Water Treatment on Storage Quality of Minimally Processed Onion (열수처리가 신선 편의가공 양파의 저장품질에 미치는 효과)

  • Hong, Seok-In;Lee, Hyun-Hee;Son, Seok-Min;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • Storage quality of minimally processed onion as influenced by hot-water dipping was investigated to examine feasibility of mild heat treatment as efficient post-processing method. fresh onions were peeled, trimmed, and dipped in hot water at various temperatures ($50-80^{\circ}C$) for 1 min. Heat-treated onions were cooled, de-watered, packaged in low density polyethylene (LDPE) film pouches ($63\;{\mu}m\;thickness$), and stored at $10^{\circ}C$. Samples treated at higher temperatures ($70-80^{\circ}C$) showed significant increases in flesh weight loss and discoloration during storage as compared to others. Hot-water dipping remarkably reduced initial microbial load of prepeeled onions, with over 1 log cycle decrease in aerobic bacterial count. After 7 days storage, no significant differences in viable aerobe count were observed among treated and untreated samples, with both showing $10^{6}-10^{7}\;CFU/g$. For sensory attributes including discoloration, wilting, decay, and visual quality, onions treated with hot-water dipping at $60^{\circ}C$ scored highest. Results suggested hot-water dipping at specific condition as practical post-processing treatment could effectively prolong shelf life of minimally processed onion.