• Title/Summary/Keyword: Oven structure

Search Result 77, Processing Time 0.027 seconds

Improvement of Rotational Molding Products (회전성형 제품의 성능 개선)

  • Lee, Hyeong-Min;Kim, Hyun-Joo;Lee, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1834-1839
    • /
    • 2003
  • Temperature and velocity distributions of hot air flows in rotational molding machines with two different shapes and structures of oven and inlet were investigated by using FLUENT, a commercial computational fluid dynamics code. The shape and structure of oven and inlet in current rotational molding machine were improved. Two different sizes of mold inside each oven were considered in the analysis. Temperature and velocity distributions of hot air flows in two different rotational molding machines were compared to each other. In order to reduce cycle time and improve product quality in current rotational molding machine, the improved shape and structure of oven and inlet were proposed.

  • PDF

Safety evaluation for oven structures using parametric method (설계 변수법을 이용한 밥솥 체결 구조물의 안전도 평가)

  • Lee, Seung-Pyo;Koh, Byung-Kab;Ha, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.853-858
    • /
    • 2008
  • The structures of induction heating type pressure rice cooker are consisted of oven. top heater plate and locking ring. Because the pressure is applied to their structures, those should be necessary to do the safety evaluation. In this paper, structure analysis is performed for oven structures by using finite element method and as a results, optimal thickness is achieved. Especially, analysis fur anisotropic layered material is performed because oven is made of both stainless steel and aluminum. And both von Mises and Tsai-Wu failure criterion are applied for safety factor. Parametric method is used in order to get the optimal thickness for oven and top heater plate.

Feasibility of utilizing oven-drying test to estimate the durability performance of concrete

  • Chen, How-Ji;Tang, Chao-Wei;Peng, Hsien-Sheng
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.389-399
    • /
    • 2011
  • The increasing concern for reinforced concrete structure durability has been justifying in many ways in the last few decades. However, there is no perfect durability test method till now. In this research an alternative method, which is based on the cumulative moisture loss percent of the concrete specimens after oven-drying, was proposed to estimate the durability performance of the concrete. Two temperatures were considered for the oven-drying tests: $100^{\circ}C$ and $200^{\circ}C$. Test results showed that oven-drying at $200^{\circ}C$ was obviously an unsuitable procedure to preserve the fragile microstructure of cement-based materials. By contrast, experimental results through oven-drying at $100^{\circ}C$ allowed estimating the moisture loss percent of cement-based materials in a more rational manner. Moreover, the magnitudes of the cumulative moisture loss percent obtained from oven-drying tests at $100^{\circ}C$ for 48 hours have good correlations with the data of other well-known methods, namely, electrical resistance test, water permeability test, and mercury intrusion porosimetry test. This investigation established that regarding the oven-drying test as one of the tests for evaluating the potential durability of concrete is considerably practicable.

Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell

  • Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.595-600
    • /
    • 2020
  • The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 ℃, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.

Safety Evaluation for Pressure Rice Cooker Oven using Experiment (실험을 이용한 전기보온압력밥솥 오븐의 안전도 평가)

  • Lee, Seung-Pyo;Koh, Byung-Kab;Ha, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1541-1547
    • /
    • 2008
  • Because of good taste and quick cooking, the induction heating type pressure rice cooker is widely used. Since pressure is applied to oven structure, it should be necessary to check the safety evaluation. In this paper, strain gauge experiment is performed in order to evaluate the oven's strain and its result is compared with that of structural analysis. And water test is performed to evaluate the oven's permanent deformation. The result is also compared with that of structural analysis. By using these experiments and analyses the safety evaluation method of the oven is suggested.

Evaluation of Soil Drying Techniques (토양건조방법들에 대한 평가)

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.168-178
    • /
    • 1983
  • Influence of several dehydration treatments on original structure and water behavior in the process of drying were investigated employing three hawaiian volcanic ash soils and four synthetic minerals. These three soils were developed under different rainfall condition and contained three different amount of amorphous materials in them. Measurement of water losses by oven drying at $105^{\circ}C$, $P_2O_5$ drying, freeze drying, and critical point drying revealed that more water losses were noted by oven drying than by three other drying techniques and the differences of water losses between oven and $P_2O_5$-drying were closely related to amoun: of amorphous materials in them, showing the order of Kaiwiki > Hilo > Kawaihae. This indicates that dehydration of amorphous materials by elevated temperature ($105^{\circ}C$) excluded water beyond that in the adsorbed (hygroscopic) state. The effect of dehydration treatments on initial structure was visualized by scanning electron microscopy. The micrographs showed that oven-and $P_2O_5$-dried samples formed into large mass of sub-angular blocky, dense, and closed crumbs, while the freeze dried and critical point dried samples resulted in less shrinkage, and small, fluffy and open spongy structure. However, critical point drying technique produced bulkier, softer, and greater open structure samples than even freeze drying. Additional Index Words: original structure, synthetic minerals, critical point drying, $P_2O_5$ drying. 1. This is a part of author's Ph.D. dissertation submitted to the University of Hawaii, Honolulu, Hawaii 96822 in 1979. 2. Professor of Agricultural Chemistry, Korea University.

  • PDF

Development on mechanism for opening sensitivity quality improvement of oven range door using nonlinear cam and spring (비선형 캠과 스프링을 이용한 오븐 렌지 도어의 열림 감성 품질 향상 메커니즘 개발)

  • Kim, Hwi-Yeon;Yun, Jae-Deuk;Jung, Yoong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.616-624
    • /
    • 2014
  • Most of oven range doors are opened from top to down. Feeling of door in case of home appliances including oven ranges affects the quality of product. The major factors to evaluate the feeling quality are opening force, closing force, and bouncing effect happened when the door is opened completely. If opening and closing forces become large, consumers may have complaints. If the bouncing effect becomes large, the impact can cause the body as well as the door to damage. Opening and closing forces, and bouncing effect must be minimized to improve the feeling quality. In this study, the mechanism which improves the existed dual compressive spring and cam structure is suggested by using nonlinear cam and spring. After the nonlinear cam is designed and manufactured for the suggested mechanism, this cam is confirmed to become more superior than the existed one by applying it to the practical oven range.

Preparation of Poly(ethylene naphthalate) Film Coated with Silicones for High Temperature Insulator (실리콘 코팅을 이용한 poly(ethylene naphthalate) 고온용 방열 필름의 제조)

  • Lee, Soo;Na, Cha-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.167-173
    • /
    • 2007
  • The surface of poly(ethylene naphthalate) film applicable to high temerature insulator for convection microwave oven was modified with silicone coating solutions in the presence of silane crosslinking agent. The structure and properties of the PEN films were investigated by using Fourier transform IR spectroscopy, viscometry, microscopy, and tensile tests. The experimental results showed that the coating with silicone enhanced thermal stability up to $200^{\circ}C$, and slightly lowered the tensile strength and elongation of the PEN films. Judging from dimensional stability results the silicone coated PEN films can not be used for higher temperature insulator above $230^{\circ}C$. Serious dimensional contraction of films was obtained during heat treatment at $250^{\circ}C$ even for 1h. However, the surface of those films still have same chemical structure of silicones. Therefore, If we use PEN film prestretched at $230^{\circ}C$ as base one it will be possible to prepare a high temperature insulator up to $230^{\circ}C$. Conclusively, a silicone coated PEN film can be suitable for the application to convection microwave oven door insulator at high temperature up to $230^{\circ}C$.

Joule Heating Effects and Initial Resistance in Electromigration Test (EM시험에서의 Joule Heating 영향 및 초기저항값)

  • Ju, Cheol-Won;Gang, Hyeong-Gon;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.436-441
    • /
    • 1999
  • Joule heating effect in EM(Electromigration) test were performed on a bend test structure. EM test is done under high current densities(1.0-2.5MA/cm2), which leads to joule heating. Since joule heating is added to the controlled oven(stress) temperature, themetal line temperature is higher than the stress temperature. The increase in the stress temperature due to joule heating is important because EM phenomena and metal line failure are related to the stress temperature. In this paper, metal line was stressed with a current density of 1.0 MA/$cm^2$, 1.5MA/$cm^2$, 2.0MA/$cm^2$, 2.5MA/$cm^2$, for 1200 sec and temperature increase due to joule heating was less than $10^{\circ}C$. Also it took 30 minutes for the metal line to equalized with oven temperature. Recommendations are given for the EM test to determine the initial resistance of EM test structure under stress temperature and current density.

  • PDF

Preparation of Functional Textiles by Multilayer Structure - Cotton Fabrics Treated with Chitosan and Alginate Skin - (다층 코팅 처리에 의한 기능성 섬유의 제조 - 키토산과 알지네이트로 피복된 면 -)

  • Son, Tae-Won;Lee, Ju-Hyun;Lee, Min-Gyeong;Cho, Jin-Won
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.201-209
    • /
    • 2011
  • With a new method of applying chitosan and alginate onto cellulose, multi-coated cotton fabrics with chitosan and alginate were prepared and characterized. To coat cotton with chitosan, raw cotton was dipped in chitosan solution, mangled of 1kgf/$cm^2$, neutralized in 2 wt% NaOH soluton, washed, and dried at $60^{\circ}C$ oven. The chitosan-coated fiber was dipped in sodium alginate solution, 1kgf/$cm^2$ mangled, neutralized in 2 wt% $CaCl_2$ solution, washed, and dried at $60^{\circ}C$ oven, resulting in CCAC(coated cotton with chitosan and calcium alginate skin) fiber characteristics. Excellent absorbancy of distilled water and saline solution was observed by the absorption test on cotton fabric treated with CCAC(0.5 wt% calcium alginate) and 0.5 wt% calcium alginate respectively. The SEM photograph confirmed the uniform coating on the cotton fabric surface.