• Title/Summary/Keyword: Ovariectomized mice

Search Result 73, Processing Time 0.023 seconds

Anti-osteoporotic Activity of Gojineumja Aqueous Extracts on the Ovariectomized Mice (난소적출 마우스에서 고진음자(固眞飮子) 물 추출물의 골다공증 개선 효과)

  • Cho, Su-Yun;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.31 no.4
    • /
    • pp.16-38
    • /
    • 2018
  • Objectives: The objective of this in vivo study is to observe the anti-osteoporotic activities of Gojineumja aqueous extracts (GJEJ) on the ovariectomized (OVX) mice as compared to those of risedronate sodium (RES). Methods: Thirty five days after bilateral OVX, GJEJ was orally administered, for 35 days once a day and then the changes on the body weight and gain during experimental periods, femur weights, bone mineral density (BMD), bone strength (failure load), mineral contents - calcium (Ca) and inorganic phosphorus (IP), histological profiles and histomorphometrical analyses at sacrifice were conducted with serum biochemistry - osteocalcin contents and bone specific alkaline phosphatase (BALP) activities. And the results of GJEJ were compared with RES orally administered OVX mice. Results: As a result of OVX, noticeable increase of body weight and gains and serum osteocalcin levels, decrease of serum BALP activities, femur weights, femur Ca and IP contents, BMD and strength were observed as compared to those of sham control mice, respectively. Also, the decrease of all histomorphometrical indices indicating the bone mass and structure, and the increase of indices about resorption were also detected in the femur of OVX control. However, these estrogen-deficient osteoporotic signs were significantly and dose-dependently inhibited by 35 days of continuous oral treatment of GJEJ, at dose levels of 500, 250 and 125 mg/kg, respectively. Especially, GJEJ 500 mg/kg showed favorable inhibitory activities against estrogen-deficient osteoporosis symptoms induced by OVX as comparable to those of RES 2.5 mg/kg. Conclusions: The results in this study suggest that oral administrations of GJEJ have clear dose-dependent favorable anti-osteoporotic activities in OVX mice.

Hormonal Effects of Several Chemicals in Recombinant Yeast, MCF-7 Cells and Uterotrophic Assays in Mice

  • Park, Jin-Sung;Lee, Beom-Jun;Kang, Kyung-Sun;Tai, Joo-Ho;Cho, Jae-Jin;Cho, Myung-Haing;Inoue, Tohru;Lee, Yong-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2000
  • Many methods have been developed for screening chemicals with hormonal activity. Using recombinant yeasts expressing either human estrogen receptor [Saccharomyces cerevisiae ER + LYS 8127 (YER)] or androgen receptor [S. cerevisiae AR + 8320 (YAR)], we evaluated the hormonal activities of several chemicals by induction of ${\beta}-galactosidase$ activity. The chemicals were $17{\beta}-estradiol$ (E2), testosterone (T), ${\rho}-nonylphenol$ (NP), bisphenol A (BPA), genistein (GEN), 2-bromopropane (2-BP), dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and butylparaben (BP). To assess the estrogenicity of NP, the result of the in vitro recombinant yeast assay was compared with an E-screen assay using MCF-7 human breast cancer cells and an uterotrophid assay using ovariectomized mice. In the YER yeast cells, E2, NP, BPA, GEN, and BP exhibited estrogenicity in a doseresponse manner, while TCDD did not. All the chemicals tested, except T, did not show androgenicity in the YAR yeast cell. The sensitivity of the yeast (YER) assay system to the estrogenic effect of NP was similar to that of the E-screen assay. NP was also estrogenic in the uterotrophic assay. However, in terms of convenience and costs, the yeast assay was superior to the E-screen assay or uterotrophic assay. These results suggest that the recombinant yeast assay can be used as a rapid tool for detecting chemicals with hormonal activities.

  • PDF

Identification of novel susceptibility genes associated with bone density and osteoporosis in Korean women

  • Bo-Young Kim;Do-Wan Kim;Eunkuk Park;Jeonghyun Kim;Chang-Gun Lee;Hyun-Seok Jin;Seon-Yong Jeong
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.63-75
    • /
    • 2022
  • Purpose: Osteoporosis is a common calcium and metabolic skeletal disease which is characterized by decreased bone mass, microarchitectural deterioration of bone tissue and impaired bone strength, thereby leading to enhanced risk of bone fragility. In this study, we aimed to identify novel genes for susceptibility to osteoporosis and/or bone density. Materials and Methods: To identify differentially expressed genes (DEGs) between control and osteoporosis-induced cells, annealing control primer-based differential display reverse-transcription polymerase chain reaction (RT-PCR) was carried out in pre-osteoblast MC3T3-E1 cells. Expression levels of the identified DEGs were evaluated by quantitative RT-PCR. Association studies for the quantitative bone density analysis and osteoporosis case-control analysis of single nucleotide polymorphism (SNPs) were performed in Korean women (3,570 subjects) from the Korean Association REsource (KARE) study cohort. Results: Comparison analysis of expression levels of the identified DEGs by quantitative RT-PCR found seven genes, Anxa6, Col5a1, Col6a2, Eno1, Myof, Nfib, and Scara5, that showed significantly different expression between the dexamethason-treated and untreated MC3T3-E1 cells and between the ovariectomized osteoporosis-induced mice and sham mice. Association studies revealed that there was a significant association between the SNPs in the five genes, ANXA6, COL5A1, ENO1, MYOF, and SCARA5, and bone density and/or osteoporosis. Conclusion: Using a whole-genome comparative expression analysis, gene expression evaluation analysis, and association analysis, we found five genes that were significantly associated with bone density and/or osteoporosis. Notably, the association P-values of the SNPs in the ANXA6 and COL5A1 genes were below the Bonferroni-corrected significance level.

The Effects of Hesperidin on the Proliferation and Activity of Bone Cells

  • Bae, Moon-Seo;Ko, Seon-Yle;Kim, Se-Won
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.119-125
    • /
    • 2006
  • The importance of phytoestrogens to human health is currently being actively investigated. Hesperidin, abundantly found in citrus fruits, is known to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, it has been reported that hesperidin inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. In our study, to determine the possible role of hesperidin in the regulation of bone metabolism, we observed the effects of hesperidin on the proliferation and activity of osteoblasts, as well as the effects of hesperidin on osteoclast generation and activity. We observed that, when treated with hesperidin, the number and viability of osteoblastic cells increased, alkaline phosphatase (ALP) activity of osteoblastic cells increased, and osteoprotegerin (OPG) secretion from MG63 cells decreased. Hesperidin treatment had no effect on the osteoclast generation and activity in the bone marrow cell culture, but decreased the number and resorptive activity of osteoclasts generated from RAW/264.7 cells. Taken together, these results indicate that hesperidin increases the proliferation and activity of osteoblasts, while inhibiting generation and activity of osteoclasts. Although the precise role of hesperidin remains to be elucidated, our study suggests that it is one of the important modulators of bone metabolism.

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.

miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates

  • Li, Jie;Li, You;Wang, Shengjie;Che, Hui;Wu, Jun;Ren, Yongxin
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.572-576
    • /
    • 2019
  • Bisphosphonates are the mainstay of therapy worldwide for osteoporosis. However, bisphosphonates also have limitations. The objective of this study was to determine the role of miR-101-3p/Rap1b signal pathway in osteoclast differentiation after treatment with bisphosphonates. Our results revealed that miR-101-3p was an important regulator in bisphosphonates treated-osteoclasts. When miR-101-3p was down-regulated in bone marrow-derived macrophage-like cells (BMMs), the development of mature osteoclasts was promoted, and vice versa. However, alendronate decreased multinucleated cell number regardless of whether miR-101-3p was knocked down or over-expressed. TRAP activity assay confirmed the above results. Luciferase assay indicated that miR-101-3p was a negative regulator of Rap1b. Western blot analysis revealed that protein expression level of Rap1b in BMMs transfected with OV-miR-101-3p was lower than that in BMMs transfected with an empty vector. Rap1b overexpression increased TRAP-positive multinucleated cells, while Rap1b inhibition decreased the cell numbers. In vivo data showed that miR-101-3p inhibited osteoclast differentiation in ovariectomized mice while overexpressed of Rap1b blocked the differentiation. Taken together, our data demonstrate that miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates.

In vivo Evaluation of Osteoporotic Fracture Prevention of the site to which low Intensity Ultrasound is Irradiated using Mechanical Strength Simulations (역학적 강도 분석을 이용한 저강도 초음파의 조사 부위의 골다공증 골절 방지 효과 평가)

  • Woo, Dae-Gon;Kim, Chi-Hoon;Park, Ji-Hyung;Ko, Chang-Young;Kim, Han-Sung;Kim, Jin-Man;Kim, Sang-Hee;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • Purpose: The aim of present study is to evaluate a possibility of clinical application for the effect of low intensity ultrasound stimulation (LIUS) in mechanical characteristics of bone on osteoporotic fractures prevention. Materials and Methods: Eight virgin ICR mice (14 weeks old, approximate weight 25g) were ovariectomized (OVX) to induce osteoporosis. The right hind limbs were then stimulated with LIDS (US Group), whereas left hind limbs were not stimulated (CON Group). Both hind limbs of all mice were scanned by in-vivo micro-CT to acquire two-dimensional (2D) images at 0 week before stimulation and 3 weeks and 6 weeks after stimulation. Three-dimensional (3D) finite element (FE) models generated by scanned 2D images were used to determine quantitatively the effect of LIUS on strength related to bone structure. Additionally, distributions of Hounsfield units and elastic moduli, which are related to the bone quality, for the bones in the US and CON groups were determined to analyze quantitatively a degree of improvement of bone qualities achieved by LIUS. Results: The result of FE analysis showed that the structural strength in US Group was significantly increased over time (p<0.05), while that in CON Group was statistically constant over time (p>0.05). High values of Hounsfield units obtained from voxels on micro-CT images and high values of elastic moduli converted from the Hounsfield units were dominantly appeared in US Group compared with those in CON Group. Conclusion: These finding indicated that LIUS would improve the mechanical characteristics of osteoporotic bone via the effects of bone structure (bone strength) and quality (Hounsfield unit and elastic modulus). Therefore, the LIUS may decrease effectively the risk of osteoporotic fracture in clinics.

Rutin Improves Bone Histomorphometric Values by Reduction of Osteoclastic Activity in Osteoporosis Mouse Model Induced by Bilateral Ovariectomy

  • Lee, Hye-Hwa;Jang, Jae-Won;Lee, Jung-Kil;Park, Choon-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.433-443
    • /
    • 2020
  • Objective : Osteoporosis is a disease of unbalanced bone metabolism that results in low bone mineral density with increased bone fragility and propensity for fractures. The increased rate of bone fracture due to osteoporosis places a significant burden on public health care expenditures. Therefore, numerous studies have been designed and performed to identify the drugs or health foods that can improve the bone quality or quantity. This study was designed to evaluate and analyze the therapeutic effects of rutin on histomorphometric values of the spine and femur in an osteoporotic mouse model induced by bilateral ovariectomy. Methods : Thirty female ICR mice (8 weeks old) underwent either a sham operation (only abdominal incision, sham group, n=10) or bilateral ovariectomy (n=20). The ovariectomized (OVX) animals were randomly divided into two groups : untreated OVX group (OVX-C, n=10), or rutin-administered group (OVX-R, n=10). The OVX-C group received weight-adjusted doses of saline vehicle and the OVX-R group received 50 mg/kg of rutin intraperitoneally, starting 1 day after surgery. At 4 and 8 weeks after surgery, serum estrogen, osteocalcin, alkaline phosphatase (ALP), and the telopeptide fragment of type I collagen C-terminus (CTX-1) were analyzed. Interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor (TNF)-α were also analyzed. Bone histomorphometric parameters of the 4th lumbar vertebra and femur were determined by micro-computed tomography. Results : In OVX-C group, ALP, osteocalcin, CTX-1, IL-1β, IL-6, and TNF-α levels were significantly increased at 4 and 8 weeks compared to sham operation group. Rutin administration after OVX statistically significantly reduced ALP, CTX-1, IL-1β, IL-6, and TNF-α levels at 4 and 8 weeks. Rutin administration also improves bone histomorphometric parameters including trabecular bone volume fraction, trabecular thickness, and trabecular number. Trabecular separation was also decreased in OVX-R group compared to OVX-C group. Conclusion : The present study demonstrated that rutin has therapeutic effects on improving bone histomorphometric values in an OVX mouse model. The improvement in histomorphometric values may be associated with the reduction of osteoclastic activity via inhibition of IL-1β, IL-6, and TNF-α. In future studies, the mechanism for the effect of rutin on osteoporosis should be demonstrated more clearly to use rutin in human osteoporosis.

The effect of swimming exercise on inflammation in ovariectomized mice with non-alcoholic fatty liver (비알코올성 지방간을 가진 난소절제 쥐에서 염증에 대한 수영운동의 영향)

  • Jeong, Sun-Hyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.356-367
    • /
    • 2021
  • This study investigated the effect of swimming exercise on inflammation in non-alcoholic fatty liver using animal models of postmenopausal obese women. Experimental animals were divided into a sham-operate + non-swimming trained group (S/N), an ovariectomize + non-swimming trained group (O/N) and an ovariectomize + swimming trained group (O/S), and were bred while eating a high fat diet for 8 weeks. Fat accumulation in liver tissue, liver weight, and serum AST and ALT increased in O/N compared to S/N, but decreased in O/S compared to O/N. Compared to S/N, O/N decreased the gene expression of IκBα in liver tissue and increased gene expression of MCP-1, IL-6, and TNF-α. But compared to O/N, O/S increased the gene expression of IκBα in liver tissue and decreased gene expression of MCP-1, IL-6, and TNF-α. In conclusion, this study suggested that swimming exercise was effective in improving physical health by improving inflammation in non-alcoholic fatty liver in obese mice induced obesity by high fat diet after ovariectomy.

Estrogeicity of Genistein and Bisphenol A (콩류식품의 주성분인 Genistein과 식품포장재 및 용기에 사용되는 Bisphenol A의 에스트로젠 효과에 관한 연구)

  • 강경선;이영순;신광순
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.106-111
    • /
    • 1998
  • This study has been focused on both estrogenic and proliferating activity of genistein (GEN) and bisphenol A (BPA). GEN and BPA enhance the proliferation of estrogen-dependent MCF-7 human breast cancer cells at concentrations as low as 100 nM of GEN and 8 ng/ml of BP A achieving similar effect to that of estradiol at 1 nM. Expression of the estrogen responsive gene, pS2 was also induced in MCF-7 cells by treatment with genistein at dose as low as 1 nM and BPA at dose as low as 4 ng/ml. Using 21 day-old ovariectomized nude mice, we examined end-bud formation and mammary gland development after treatment with bisphenol A or genistein. Compared with untreated control, mammary gland development and end-bud formation were significantly increased in mice fed genistein or bisphenol A (p<0.05). Taken together, it is concluded that GEN and BP A can act as an estrogen agonist resulting in cell proliferation and induction of the estrogen responsive pS2 gene in MCF-7 cells in vitro and in athymic mice in vivo, respectively. Therefore, it is suggested that GEN and BP A might modulate human endocrine system and these compounds might be considered as a endocrine modulator at the low levels of doses.

  • PDF