• Title/Summary/Keyword: Outward $K^+$ currents

Search Result 69, Processing Time 0.023 seconds

Imipramine Inhibits A-type Delayed Rectifier and ATP-Sensitive $K^{+}$ Currents Independent of G-Protein and Protein Kinase C in Murine Proximal Colonic Myocytes

  • Choi, Seok;Parajuli, Shankar Prasad;Lim, Geon-Han;Kim, Jin-Ho;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Jun, Jae-Yeoul
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.998-1005
    • /
    • 2006
  • The effects of imipramine on A-type delayed rectifier $K^{+}$ currents and ATP-sensitive $K^{+}\;(K_{ATP)$ currents were studied in isolated murine proximal colonic myocytes using the whole-cell patch-clamp technique. Depolarizing test pulses between-80 mV and +30 mV with 10 mV increments from the holding potential of-80 mV activated voltage-dependent outward $K^{+}$ currents that peaked within 50 ms followed by slow decreasing sustained currents. Early peak currents were inhibited by the application of 4-aminopyridine, whereas sustained currents were inhibited by the application of TEA. The peak amplitude of A-type delayed rectifier $K^{+}$ currents was reduced by external application of imipramine. The half-inactivation potential and the half-recovery time of A-type delayed rectifier $K^{+}$ currents were not changed by imipramine. With 0.1 mM ATP and 140 mM $K^{+}$ in the pipette and 90 mM $K^{+}$ in the bath solution and a holding potential of -80 mV, pinacidil activated inward currents; this effect was blocked by glibenclamide. Imipramine also inhibited $K_{ATP}$ currents. The inhibitory effects of imipramine in A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents were not changed by guanosine 5-O-(2-thiodiphosphate) ($GDP{\beta}S$) and chelerythrine, a protein kinase C inhibitor. These results suggest that imipramine inhibits A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents in a manner independent of G-protein and protein kinase C.

Swelling-activated $Cl^-$ Channels in Human Salivary Gland Acinar Cells

  • Chung, Ge-Hoon;Sim, Jae-Hyun;Kim, Soung-Min;Lee, Jong-Ho;Chun, Gae-Sig;Choi, Se-Young;Park, Kyung-Pyo
    • International Journal of Oral Biology
    • /
    • v.34 no.3
    • /
    • pp.151-155
    • /
    • 2009
  • The role of $Cl^-$ channels in regulatory volume decrease (RVD) in human salivary gland acinar cells was examined using a whole-cell patch clamp technique. Human tissues were obtained from healthy volunteers or from patients with oromaxillofacial tumors. During the measurements, $K^+$-free solutions were employed to eliminate contamination of whole-cell conductance by $K^+$ currents. When the cells were exposed to a 70% hypotonic solution, outward-rectifying currents, which were not observed in the resting state, were found to have significantly increased both in human labial and parotid gland acinar cells. The amplitudes of the currents were reduced in a low $Cl^-$ bath solution. Furthermore, the addition of $100{\mu}M$ 5-Nitro-2- (3-phenyl propylamino) benzoic acid (NPPB) or $100{\mu}M$ 4,4'-diisothio cyanatostilbene-2,2'-disulphonic acid (DIDS), known to partially block $Cl^-$ channels, significantly inhibited these currents. Its outward-rectifying current profile, shift in reversal potential in a low $Cl^-$ bath solution and pharmacological properties suggest that this is a $Ca^{2+}$-independent, volume activated $Cl^-$ current. We conclude therefore that volume activated $Cl^-$ channels play a putative role in RVD in human salivary gland acinar cells.

Voltage-Dependent Ionic Currents and Their Regulation by GTP and Phorbol Ester in the Unfertilized Eggs of Mouse and Hamster

  • Kim, Ik-Hyun;Kim, Yang-Mi;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.93-105
    • /
    • 1993
  • The present study was performed to investigate the properties of ionic currents elicited by voltage pulses in the unfertilized eggs of mouse and hamster by using the whole cell voltage clamp techniques and to find out if there are any differences in properties between eggs of the two rodents. In addition, the modulatory effect of G proteins and protein kinase C (PKC) on the ionic channels were observed. The inward current in hamster eggs was shown to be due to $Ca^{2+}\;current\;(i_{ca})$). The current voltage relations of these currents in hamster egg were analogous to those in mouse eggs. The amplitude of $i_{ca}$ in the hamster egg was larger than that in the mouse egg ($-3.12{\pm}1.07\;nA\;vs.\;-1.71{\pm}0.71\;nA,\;mean{\pm}\;SD$). These results suggest that the $Ca^{2+}$ channels in both kinds of eggs have similar channel properties but their density, and/or conduct ance per unit area is higher in hamster eggs than in mouse eggs. Outward currents in eggs of both mouse and hamster were carried by $K^+$. In hamster eggs, they appeared to comprise at least two components; a transient outward component ($i_{to}$) and a steady state component ($i_{\infty}.$ The $i_{to}$ was found to be dependent on intracellular $Ca^{2+}$ concentration; whereas on the other hand $i_{\infty}\;was\;Ca^{2+}$-independent. $Ca^{2+}$ currents were increased in eggs treated with GTP (or $GTP{\gamma}S$) or fluoroaluminate ($AIF_4^-$). In the hamster egg these increments were antagonized by GDP (or $GDP{\beta}S$) application. In contrast to the enhancement of $i_{ca},\;i_k$ was reduced following GTP (or $GTP{\gamma}S$) perfusion in mouse eggs. The transient component ($i_{to}$) in hamster eggs was increased by adding GTP but decreased by phorbol ester, TPA or dioctanoyl glycerol (DOG). Simultaneous application of $GTP{\gamma}S$ and DOG suppressed $i_{to}$ more effectively than a single application or DOG or TPA. From the above results, we have shown that ionic currents elicited by voltage pulses existed in the unfertilized eggs of mouse and hamster. There are at least two types of currents, $i_{ca}\;and\;i_k$ in mouse eggs, while three types, $i_{ca},\;Ca^{2+}$-dependent $i_k$ and $Ca^{2+}$-independent $i_k$ exist in hamster eggs. ionic channels in these eggs may be regulated either directly by GTP and PKC or indirectly by the substances linked with GTP and PKC.

  • PDF

[$Ca^{2+}-activated\;K^+$ Currents of Pancreatic Duct Cells in Guinea-pig

  • Lee, Han-Wook;Li, Jing Chao;Koo, Na-Youn;Piao, Zheng Gen;Hwang, Sung-Min;Han, Jae-Woong;Choi, Han-Saem;Lee, Jong-Heun;Kim, Joong-Soo;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.335-338
    • /
    • 2004
  • There are numerous studies on transepithelial transports in duct cells including $Cl^-$ and/or $HCO_3^-$. However, studies on transepithelial $K^+$ transport of normal duct cells in exocrine glands are scarce. In the present study, we examined the characteristics of $K^+$ currents in single duct cells isolated from guinea pig pancreas, using a whole-cell patch clamp technique. Both $Cl^-$ and $K^+$ conductance were found with KCI rich pipette solutions. When the bath solution was changed to low $Cl^-$, reversal potentials shifted to the negative side, $-75{\pm}4\;mV$, suggesting that this current is dominantly selective to $K^+$. We then characterized this outward rectifying $K^+$ current and examined its $Ca^{2+}$ dependency. The $K^+$ currents were activated by intracellular $Ca^{2+}$. 100 nM or 500 nM $Ca^{2+}$ in pipette significantly (P<0.05) increased outward currents (currents were normalized, $76.8{\pm}7.9\;pA$, n=4 or $107.9{\pm}35.5\;pA$, n=6) at +100 mV membrane potential, compared to those with 0 nM $Ca^{2+}$ in pipette $(27.8{\pm}3.7\;pA,\;n=6)$. We next examined whether this $K^+$ current, recorded with 100 nM $Ca^{2+}$ in pipette, was inhibited by various inhibitors, including $Ba^{2+}$, TEA and iberiotoxin. The currents were inhibited by $40.4{\pm}%$ (n=3), $87.0{\pm}%$ (n=5) and $82.5{\pm}%$ (n=9) by 1 mM $Ba^{2+}$, 5 mM TEA and 100 nM iberiotoxin, respectively. Particularly, an almost complete inhibition of the current by 100 nM iberiotoxin further confirmed that this current was activated by intracellular $Ca^{2+}$. The $K^+$ current may play a role in secretory process, slnce recycling of $K^+$ is critical for the initiation and sustaining of $CI^-$ or $HCO_3^-$ secretion in these cells.

Four Voltage-Gated Potassium Currents in Trigeminal Root Ganglion Neurons

  • Choi, Seung Ho;Youn, Chang;Park, Ji-Il;Jeong, Soon-Yeon;Oh, Won-Man;Jung, Ji-Yeon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • Various voltage-gated $K^+$ currents were recently described in dorsal root ganglion (DRG) neurons. However, the characterization and diversity of voltage-gated $K^+$ currents have not been well studied in trigeminal root ganglion (TRG) neurons, which are similar to the DRG neurons in terms of physiological roles and anatomy. This study was aimed to investigate the characteristics and diversity of voltage-gated $K^+$ currents in acutely isolated TRG neurons of rat using whole cell patch clamp techniques. The first type (type I) had a rapid, transient outward current ($I_A$) with the largest current size having a slow inactivation rate and a sustained delayed rectifier outward current ($I_K$) that was small in size having a fast inactivation rate. The $I_A$ currents of this type were mostly blocked by TEA and 4-AP, K channel blockers whereas the $I_K$ current was inhibited by TEA but not by 4-AP. The second type had a large $I_A$ current with a slow inactivation rate and a medium size-sustained delayed $I_K$ current with a slow inactivation rate. In this second type (type II), the sensitivities of the $I_A$ or $I_K$ current by TEA and 4-AP were similar to those of the type I. The third type (type III) had a medium sized $I_A$ current with a fast inactivation rate and a large sustained $I_K$ current with the slow inactivation rate. In type III current, TEA decreased both $I_A$ and $I_K$ but 4-AP only blocked $I_A$ current. The fourth type (type IV) had a smallest $I_A$ with a fast inactivation rate and a large $I_K$ current with a slow inactivation rate. TEA or 4-AP similarly decreased the $I_A$ but the $I_K$ was only blocked by 4-AP. These findings suggest that at least four different voltage-gated $K^+$ currents in biophysical and pharmacological properties exist in the TRG neurons of rats.

Inhibition of Pacemaker Activity of Interstitial Cells of Cajal by Hydrogen Peroxide via Activating ATP-sensitive $K^+$ Channels

  • Choi Seok;Parajuli Shankar Prasad;Cheong Hyeon-Sook;Paudyal Dilli Parasad;Yeum Cheol-Ho;Yoon Pyung-Jin;Jun Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • To investigate whether hydrogen peroxide($H_2O_2$) affects intestinal motility, pacemaker currents and membrane potential were recorded in cultured interstitial cells of Cajal(ICC) from murine small intestine by using a whole-cell patch clamp. In whole cell patch technique at $30^{\circ}C$, ICC generated spontaneous pacemaker potential under current clamp mode(I=0) and inward currents(pacemaker currents) under voltage clamp mode at a holding potential of -70 mV. When ICC were treated with $H_2O_2$ in ICC, $H_2O_2$ hyperpolarized the membrane potential under currents clamp mode and decreased both the frequency and amplitude of pacemaker currents and increased the resting currents in outward direction under voltage clamp mode. Also, $H_2O_2$ inhibited the pacemaker currents in a dose-dependent manner. Because the properties of $H_2O_2$ action on pacemaker currents were same as the effects of pinacidil(ATP-sensitive $K^+$ channels opener), we tested the effects of glibenclamide(ATP-sensitive $K^+$ channels blocker) on $H_2O_2$ action in ICC, and found that the effects of $H_2O_2$ on pacemaker currents were blocked by co- or pre- treatment of glibenclamide. These results suggest that $H_2O_2$ inhibits pacemaker currents of ICC by activating ATP-sensitive $K^+$ channels.

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

Depression of L-type $Ca^{2+}$ and Transient Outward $K^+$ Currents in Endotoxin-treated Rat Cardiac

  • Park, Kyu-Sang;Lee, Boo-Soo;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.623-630
    • /
    • 1999
  • Decreased cardiac contractility occurs in endotoxicosis, but little is known about the ionic mechanism responsible for myocardial dysfunction. In this study, we examined the changes in $Ca{2+}$ and $K^+$ currents in cardiac myocytes from endotoxin-treated rat. Ventricular myocytes were isolated from normal and endotoxemic rats (ex vivo), that were treated for 10 hours with Salmonella enteritidis lipopolysaccharides (LPS; 1.5 mg/kg) intravenously. Normal cardiac myocytes were also incubated for 6 hours with 200 ng/ml LPS (in vitro). L-type $Ca{2+}$ current $(I_{Ca,L})$ and transient outward $K^+$ current $(I_{to})$ were measured using whole cell patch clamp techniques. Peak $I_{Ca,L}$ was reduced in endotoxemic myocytes (ex vivo; 6.00.4 pA/pF, P<0.01) compared to normal myocytes (control; 10.90.6 pA/pF). Exposure to endotoxin in vitro also attenuated $I_{Ca,L}$ (8.40.4 pA/pF, P<0.01). The amplitude of $(I_{to})$ on depolarization to 60 mV was reduced in endotoxin treated myocytes (16.51.5 pA/pF, P<0.01, ex vivo; 20.00.9 pA/pF, P<0.01 , in vitro) compared to normal myocytes (control; 24.71.0 pA/pF). There was no voltage shift in steady-state inactivation of $I_{Ca,L}$ and $(I_{to})$ between groups. These results suggest that endotoxin reduces $Ca{2+}$ and $K^+$ currents of rat cardiac myocytes, which may lead to cardiac dysfunction.

  • PDF

Effects of Dangkwisoo-San, Ginger and Curcumin on Transient Receptor Potential Melastatin 7 Channels (당귀수산, 생강, 커큐민의 대사성 질환과 관련된 일과성 수용체 전압 이온통로조절에 관한 연구)

  • Kim, Byung Joo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2018
  • Objectives: Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP) melastatin 7 (TRPM7) channels have been associated with the development of cardiovascular diseases. The purpose of this study was to investigate the effects of Dangkwisoo-san, ginger and curcumin on TRPM7 channel. Methods: Human embryonic kidney (HEK) 293 cells stably transfected with the TRPM7 expression vectors were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, $5{\mu}g/mL$ blasticidin, and 0.4 mg/mL zeocin in a humidified 20% $O_2$/10% $CO_2$ atmosphere at $37^{\circ}C$. Whole-cell patch clamp recordings were obtained using an Axopatch 700B amplifier and pClamp v.10.4 software, and signals were digitalized at 5 kHz using Digidata 1422A. Results: Dangkwisoo-san extract (100, 200, 300, 400, and $500{\mu}g/mL$) inhibited the outward and inward TRPM7 whole-cell currents at dose dependent manner and the half maximal inhibitory concentration $(IC)_{50}$ of Dangkwisoo-san was $218.3{\mu}g/mL$. Also, ginger extract (100, 200, 300, 400, and $500{\mu}g/mL$) inhibited the outward and inward of TRPM7 whole-cell currents in a dose dependent manner and the $IC_{50}$ of ginger was $877.2{\mu}g/mL$. However, curcumin had no effects on TRPM7 whole-cell currents. Conclusions: These results suggest that both Dangkwisoo-san and ginger have good roles to inhibit the TRPM7 channel, suggesting that Dangkwisoo-san and ginger are considered one of the candidate agents for the treatment of metabolic syndrome such as cardiovascular disease.

Effects of Lemakalim, a Potassium Channel Opener, on the Contractility and Electrical Activity of the Antral Circular Muscle in Guinea-Pig Stomach

  • Kim, Sung-Joon;Jun, Jae-Yeoul;Choi, Youn-Baik;Kim, Ki-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.37-50
    • /
    • 1994
  • Synthetic potassium channel openers (KCOs) are agents capable of opening K-channels in excitable cells. These agents are known to have their maximal potency in the smooth muscle tissue, especially in the vascular smooth muscle. Much attention has been focused on the type of K-channel that is responsible for mediating the effects of KCOs. As the KCO-induced changes are antagonized by glibenclamide, an $K_{ATP}$ (ATP-sensitive K-channel) blocker in the pancreatic ${\beta}-cell,\;K_{ATP}$ was suggested to be the channel responsible. However, there also are many results in favor of other types of K-channel $$(maxi-K,\;small\;conductance\;K_{Ca,}\; SK_{ATP}) mediating the effects of KCOs. Effects of lemakalim, (-)enantiomer of cromakalim (BRL 34915), on the spontaneous contractions and slow waves, were investigated in the antral circular muscle of the guinea-pig stomach. Membrane currents and the effects on membrane currents and single channel activities were also measured in single smooth muscle cells and excised membrane patches by using the patch clamp method. Lemakalim induced hyperpolarization and inhibited spontaneous contractions in a dose-dependent manner. These effects were blocked by glibenclamide and low concentrations of tetraethyl ammonium (< mM). Glibenclamide blocked the effect of lemakalim on the membrane potential and slow waves. The mechanoinhibitory effect of lemakalim was blocked by pretreatment with glibenclamide. In a whole ceIl patch clamp condition, lemakalim largely increased outward K currents. These outward K currents were blocked by TEA, glibenclamide and a high concentration of intracelIular EGTA (10 mM). Volatage-gated Ca currents were not affected by lemakalim. In inside-out patch clamp experiments, lemakalim increased the opening frequency of the large conductance $Ca^{2+}-activated$ K channels $(BK_{Ca},\;Maxi-K).$ From these results, it is suggested that lemakalim induces hyperpolarization by opening K-channels which are sensitive to internal Ca and such a hyperpolarization leads to the inhibition of the spontaneous contraction.

  • PDF