• Title/Summary/Keyword: Output voltage and frequency

Search Result 1,468, Processing Time 0.031 seconds

Minimization of a CW CO2 Laser Output Ripple by using High Frequency Resonance Phenomena (고주파 공진현상을 이용한 CW CO2 레이저의 출력리플 최소화)

  • Sikander, Sakura;Kwon, Min-Jae;Kim, Hee-Je;Lee, Dong-Gil;Xu, Guo-Cheng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.798-802
    • /
    • 2013
  • In a conventional DC power supply used for CO2 laser, the circuit elements such as a rectifier bridge, a current-limiting resistor, a high voltage switch, energy storage capacitors ans a high-voltage isolation transformer using high turn ratio are necessary. Consequently, those supplies are expensive and require a large space. Thus, laser resonator and power supply should be optimally designed. In this paper, we propose a new power supply using high frequency resonance phenomena for CW(Continuous wave) CO2 laser (maximum output of 23W with discharge length of 450mm). It consists of a transformer including leakage inductance, magnetizing inductance and half-bridge converter, a three-stage Cockcroft-Walton and PFC(Power factor correction) circuit. The output ripple voltage can be controlled the minimum of 0.24% under the high frequency switching of 231kHz. Furthermore, the output efficiency was improved to 16.4% and the laser output stability of about 5.6% was obtained in this laser system.

Controller Design of the Series Resonant Converter for Reducing Output Voltage Ripple (출력 전압 맥동감소를 위한 직렬공진형 변환기의 제어기 설계)

  • 김만고;한재원;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.6
    • /
    • pp.376-382
    • /
    • 1988
  • A small-signal low-frequency disturbance of the input line affects the regulated-output voltage of the series resonant converter. To mitigate the detrimental effect, the output feedback PI-controller is employed. Small-signal linear models are represented to characterize the closed loop series resonant converter system. Design equations for the PI-controller which satisfy stability and percent ripple conditions are derived from the closed-loop linear model. Experimental results are presented which show excellent correlation with theory.

  • PDF

Control and Implementation of Dual-Stator-Winding Induction Generator for Variable Frequency AC-Generating System

  • Bu, Feifei;Hu, Yuwen;Huang, Wenxin;Shi, Kai
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.798-805
    • /
    • 2013
  • This paper presents the control and implementation of the dual-stator-winding induction generator for variable frequency AC (VFAC) generating system. This generator has two sets of stator windings embedded into the stator slots. The power winding produces the VFAC power to feed the loads, and the control winding is connected to the static excitation controller to control the generator for output voltage regulation with speed and load variations. On the basis of the idea of power balance, an instantaneous slip frequency control (ISFC) strategy using the information of both the output voltage and the output power is used in this system. A series of experiments is carried out on a 15 kW prototype for verification. Results show that the system has good static and dynamic performance in a wide speed range, which demonstrates that the ISFC strategy is suitable for this system.

Unbalance Control Strategy of Boost Type Three-Phase to Single-Phase Matrix Converters Based on Lyapunov Function

  • Xu, Yu-xiang;Ge, Hong-juan;Guo, Hai
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.89-98
    • /
    • 2019
  • This paper analyzes the input side performance of a conventional three-phase to single-phase matrix converter (3-1MC). It also presents the input-side waveform quality under this topology. The suppression of low-frequency input current harmonics is studied using the 3-1MC plus capacitance compensation unit. The constraint between the modulation function of the output and compensation sides is analyzed, and the relations among the voltage utilization ratio and the output compensation capacitance, filter capacitors and other system parameters are deduced. For a 3-1MC without large-capacity energy storage, the system performance is susceptible to input voltage imbalance. This paper decouples the inner current of the 3-1MC using a Lyapunov function in the input positive and negative sequence bi-coordinate axes. Meanwhile, the outer loop adopts a voltage-weighted synthesis of the output and compensation sides as a cascade of control objects. Experiments show that this strategy suppresses the low-frequency input current harmonics caused by input voltage imbalance, and ensures that the system maintains good static and dynamic performances under input-unbalanced conditions. At the same time, the parameter selection and debugging methods are simple.

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

LLC Resonant Converter Operating over a Wide Output Voltage Range by Varying the Input Voltage and Changing Operating Modes (입력전압 가변 및 동작 모드 변화를 통해 넓은 출력전압 범위에서 동작하는 LLC 공진컨버터)

  • Lee, Ji-Cheol;Joo, Jong-Seong;Heo, Ye-Chang;Marius, Takongmo;Kim, Eun-Soo;Jeon, Yong-Seog;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.517-526
    • /
    • 2017
  • In this paper, we propose an LLC resonant converter that operates over a wide controllable output voltage ($50V_{DC}$ to $800V_{DC}$) and shows high efficiency characteristics under all load conditions and output voltages. Two 3.3kW prototypes are designed for an experimental comparison between the variable frequency control (control scheme 1) and the variable input voltage($V_{IN}$) control (control scheme 2) mechanisms. The experimental results show that the variable input control mechanism demonstrates high efficiency under all loads and output voltages.

A Compensation Method for Time Dealy of Full Digital Synchronous Frame Current Regulator of PWM ac Drives (디지털 동기좌표계 전류제어기에서의 시지연을 고려한 PWM 기법)

  • Bae, Bon-Ho;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.244-246
    • /
    • 2001
  • In a full digital implementation of a current regulator, the voltage output is inevitably delayed due to arithmetic calculation and PWM. In case of the synchronous frame current regulator, the time delay is accompanied by the rotation of frame. In some applications in which the ratio of sampling frequency to output frequency is not high enough, such as high power drive or super high-speed drive, it is known that the effect of rotation of frame during the delay time causes phase and magnitude error in the voltage output. The error degrades the dynamic performance and can bring about the instability of current regulator at high speed. It is also intuitively known that advancing the phase of voltage output can mitigate the instability. In this paper, the instability problems are studied analytically and a compensation method for the error has been proposed. By means of computer simulation and complex root locus analysis, comparative study with conventional methods is carried out and the effectiveness of proposed method is verified.

  • PDF

The Development of a Programmable Single-Phase AC Power Source with a Linear Power Amplifier

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Yoo, Jae-Geun;Son, Jae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.39-46
    • /
    • 2007
  • This paper presents a programmable single-phase ac power source that provides a sinusoidal output voltage with an adjustable output amplitude and frequency over a wide range as well as an arbitrary waveform. The ac power source under consideration have a linear power amplifier. The desired output values can be programmed with a personal computer. The power source operates at 220[V]/60[Hz] mains and the output voltage is isolated from the input circuit. The system consists mainly of a power converter to generate and amplify the waveform signal, a controller to control the desired output signal and measure the output parameters, and a control program to set the desired output and display the values. The prototype ac power source was constructed and tested with the results demonstrating a good performance.

Power Control of the DFIG Using the Rotor Exciting Control (회전자 여자제어를 이용한 풍력발전 DFIG의 출력제어)

  • 이우석;오철수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFlG) has good adaptivity for that purpose. Ths paper investigates speed and output stator power control using a grid connected to a DFlG in super-synchronous speed regions, by control of both magnitude and frequency of the voltage fed to the rotor. For the speed control analysis, torque simulation is perforrred whereby the different slip between qJernting rmtor driving frequency and synchronous frequency of M-G system awlied. To keep the output rating of the generator, the exciting frequency and voltage attenuation are arolied.rolied.

  • PDF

A Design of Voltage Controlled Oscillator and High Speed 1/4 Frequency Divider using 65nm CMOS Process (65nm CMOS 공정을 이용한 전압제어발진기와 고속 4분주기의 설계)

  • Lee, Jongsuk;Moon, Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.107-113
    • /
    • 2014
  • A VCO (Voltage Controlled Oscillator) and a divide-by-4 high speed frequency divider are implemented using 65nm CMOS technology for 60GHz wireless communication system. The mm-wave VCO was designed by NMOS cross-coupled LC type using current source. The architecture of the divide-by-4 high speed frequency divider is differential ILFD (Injection Locking Frequency Divider) with varactor to control frequency range. The frequency divider also uses current sources to get good phase noise characteristics. The measured results show that the VCO has 64.36~67.68GHz tuning range and the frequency divider divides the VCO output by 4 exactly. The high output power of 5.47~5.97dBm from the frequency divider is measured. The phase noise of the VCO including the frequency divider are -77.17dBc/Hz at 1MHz and -110.83dBc/Hz at 10MHz offset frequency. The power consumption including VCO is 38.4mW with 1.2V supply voltage.