• 제목/요약/키워드: Output ripple

검색결과 593건 처리시간 0.024초

인버터식 X선장치의 관전압 맥동율 개선에 관한 연구 (A Study on the Improvement of ripple factor tube voltage waveforms in inverter type X-ray generator)

  • 이성길;임홍우;조금배;정수복;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.234-238
    • /
    • 1999
  • In order to radiate X-ray, the low ripple stabilized high voltage DC over the range of 40KV to 150KV is directly inflicted to X-ray tube. The energy characteristics of the radiated X-ray depend on the pulsating waveforms of the DC voltage supplied X-ray tube. In general, the low ripple voltage waveforms with fast rising times are required to increase with the dosage per unit time lest the exposure time should be longer in orde that the motion artifacts of an object may be eliminated in actual. The conventional types of X-ray generators were bulky in physical size and heavy in weight, and the control accuracies of the output voltages were not always satisfactory. The high frequency switching inverter and converter technology on power conversion and control systems have been greatly closed up introducing new power semiconductor devices. To decreasing the volume and the weight of high voltage transformer, and to stabilize ripple, a high frequency PWM inverter is connected between DC source and high voltage transformer. This paper describes the output characteristics according to stabilize ripple of X-ray tube voltage and compared the reproducibility, direcibility and doesage.

  • PDF

태양광 인버터의 노치 필터 최적 설계 (Optimal Design of Notch Filter in Photovoltaic Inverter)

  • 김용래;허철영;이영권;최익;최주엽
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.81-92
    • /
    • 2019
  • When Photovoltaic inverter is connected to grid and used as PVPCS (Photovoltaic Power Conditioning System), 120 Hz AC ripple occurs at the dc-link capacitor voltage. This AC ripple reduces the efficiency of PVPCS and shortens the lifetime of the capacitor. In this paper, we design a notch filter to remove AC ripple. As a result, the AC voltage ripple was removed from the dc link and the THD of the PVPCS output current with the notch filter was lowered. This notch filter is determined by the damping coefficient, the bandwidth coefficient, and the switching frequency. Among these, the switching frequency determines the switching loss and the size of the LC filter, and the PVPCS with the high switching frequency has a greater efficiency loss due to the switching loss than the efficiency improvement by the notch filter. Therefore, it is important to set the optimum switching frequency in the PVPCS with the notch filter applied. In this paper, THD and switching loss of PVPCS output current with notch filter are calculated through simulation, and cost function to calculate optimum switching frequency through data is proposed.

산부인과 펄스형 $CO_2$ 레이저의 펄스모듈 특성에 의한 동작파형의 일정한 시스템의 구현 (Fixed system of action waveform by pulse module special quality of obstetrics and gynecology pulse style $CO_2$ laser relationship embodiment)

  • 김휘영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.159-161
    • /
    • 2007
  • $CO_2$ laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400ums laser beam in rain focus sacred ground surroundings cellular tissue without vitiation me by evaporation Poe of very small floor as is clean steam can. Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can. Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

전압 스트레스와 맥동이 개선된 양극성 출력 전압을 갖는 LCCT Z-소스 DC-DC 컨버터 (LCCT Z-Source DC-DC Converter with the Bipolar Output Voltages for Improving the Voltage Stress and Ripple)

  • 박종기;신연수;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.91-102
    • /
    • 2013
  • This paper proposes the improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source DC-DC converter (Improved LCCT ZSDC) which can generate the bipolar output voltages according to duty ratio D. The proposed converter has the characteristic and structure of Quasi Z-source DC-DC converter(Quasi ZSDC) and conventional LCCT Z-source DC-DC converter(LCCT ZSDC). To confirm the validity of the proposed method, PSIM simulation and a DSP based experiment were performed for each converter. In case which the input DC voltage is 70V, the bipolar output DC voltage of positive 90V and negative 50V could generate. Also, as comparison result of the capacitor voltage ripple in Z-network and the input current under the same condition for each converter, the voltage stress and the capacitor voltage in Z-network of the proposed method were lower compared with the conventional methods. Finally, the efficiency for each method was investigated according to load variation and duty ratio D.

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

QSRC의 출력전압맥동해석 (Output Voltage Ripple Analysis of Quantum Series Resonant Converter)

  • 임성운;권우현;조규형
    • 전자공학회논문지B
    • /
    • 제31B권3호
    • /
    • pp.141-149
    • /
    • 1994
  • In this paper, we could find optimum quantum sequence(OQS) to minimize the output ripple voltage of the quantum series resonant converter(QSRC). This sequence control is so general that it is irrelevant to the voltage gain so far as it is operating in the continuous conduction mode(CCM). Further more the dynamic range of QSRC is much extended by the optimum quantum sequence control(OQSC). Througuout the time-domain analysis, the solution of steady state and the boundary condition between continuous and discontinuous mode is QSRC is obtained. This feature is verified by simulations and experiments with good agreements.

  • PDF

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

새로운 시분할 다중 제어 기법에 기반한 다중 출력 충전기 (Multiple Output Charger based on the Novel Time Division Multiple Control Technique)

  • 트란반롱;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.13-14
    • /
    • 2013
  • Multiple output converters (MOCs) are widely used for applications which require various kinds of the output voltages due to its advantages in cost, volume, and efficiency. However, most of the MOCs developed so far can regulate only one output tightly and require as many secondary windings in the transformer as the number of the outputs. In this paper, a novel Time Division Multiple Control (TDMC) method to regulate all the outputs in high precision is proposed and applied to the double ended forward converter for the multiple battery charger. Additional benefit of the proposed topology is to require only one secondary winding in the transformer for all the outputs. The proposed converter can charge two different kinds of batteries or same kind of batteries in different state of charges (SOCs) by CC/CV mode independently with the even degree of tight regulation, thereby satisfying the ripple requirements for each battery.

  • PDF