• Title/Summary/Keyword: Output Prediction

Search Result 735, Processing Time 0.024 seconds

R&D Activities, Imperfect Competition and Economic Growth (R&D 및 불완전경쟁과 경제성장)

  • Kim, Byung-Woo
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.1
    • /
    • pp.47-72
    • /
    • 2007
  • Ideas do not become exhausted, and there are no diminishing returns in the creation of knowledge. Nonetheless, growth ultimately ceases in this simplest model of endogeneous innovation. The reasons are similar to those that are discussed in the context of the neoclassical model of capital accumulation. Even if the resource cost of creating new goods does not rise, the economic return to invention may decline as the number of available products increases. When the rate of return to R&D falls to the level of the discount rate, private agents cease to be willing to defer consumption in order to invest in product development. But, if we treat knowledge capital as a public capital considering of its non-appropriable benefits, economic growth can be sustained in the economy. Romer(1986) has pointed out that growth might be sustainable if the accumulation of knowledge is not subject to long-run diminishing returns. Actually Romer assumed diminishing returns in the production of private knowledge from available resources, but increasing returns in the production of output from labor and total (public and private) knowledge. His condition for the sustainability of long-run growth amounts to an assumption that the diminishing returns in the former activity do not outweigh the increasing returns in the latter. The Johansen(1988) cointegration test method is used for finding long-run equilibrium relationship between R&D input and the product innovation. Test results indicate the existence of cointegrating equation between each pair of regression variables including dependent variable in the knowledge production function. And, the signs of cointegrating vectors are well accord to the prediction of sustainable growth. In the empirical analysis, from all cases of the form for the knowledge production function, we could not reject the null hypothesis that R&D spillover effect is significant($H_{0}:\;{\gamma}=1$). In summary, we showed that considering goodness of fit of regression model, we can see that the empirical evidence is strongly in favor of the character of knowledge as the public knowledge capital. So, we can expect that by product innovation, economic growth can be sustained in the Korean economy.

  • PDF

Adaptive In-loop Filter Method for High-efficiency Video Coding (고효율 비디오 부호화를 위한 적응적 인-루프 필터 방법)

  • Jung, Kwang-Su;Nam, Jung-Hak;Lim, Woong;Jo, Hyun-Ho;Sim, Dong-Gyu;Choi, Byeong-Doo;Cho, Dae-Sung
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose an adaptive in-loop filter to improve the coding efficiency. Recently, there are post-filter hint SEI and block-based adaptive filter control (BAFC) methods based on the Wiener filter which can minimize the mean square error between the input image and the decoded image in video coding standards. However, since the post-filter hint SEI is applied only to the output image, it cannot reduce the prediction errors of the subsequent frames. Because BAFC is also conducted with a deblocking filter, independently, it has a problem of high computational complexity on the encoder and decoder sides. In this paper, we propose the low-complexity adaptive in-loop filter (LCALF) which has lower computational complexity by using H.264/AVC deblocking filter, adaptively, as well as shows better performance than the conventional method. In the experimental results, the computational complexity of the proposed method is reduced about 22% than the conventional method. Furthermore, the coding efficiency of the proposed method is about 1% better than the BAFC.

Analysis of Impact of Hydrologic Data on Neuro-Fuzzy Technique Result (수문자료가 Neuro-Fuzzy 기법 결과에 미치는 영향 분석)

  • Ji, Jungwon;Choi, Changwon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1413-1424
    • /
    • 2013
  • Recently, the frequency of severe storms increases in Korea. Severe storms occurring in a short time cause huge losses of both life and property. A considerable research has been performed for the flood control system development based on an accurate stream discharge prediction. A physical model is mainly used for flood forecasting and warning. Physical rainfall-runoff models used for the conventional flood forecasting process require extensive information and data, and include uncertainties which can possibly accumulate errors during modelling processes. ANFIS, a data driven model combining neural network and fuzzy technique, can decrease the amount of physical data required for the construction of a conventional physical models and easily construct and evaluate a flood forecasting model by utilizing only rainfall and water level data. A data driven model, however, has a disadvantage that it does not provide the mathematical and physical correlations between input and output data of the model. The characteristics of a data driven model according to functional options and input data such as the change of clustering radius and training data length used in the ANFIS model were analyzed in this study. In addition, the applicability of ANFIS was evaluated through comparison with the results of HEC-HMS which is widely used for rainfall-runoff model in Korea. The neuro-fuzzy technique was applied to a Cheongmicheon Basin in the South Han River using the observed precipitation and stream level data from 2007 to 2011.

The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed (적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링)

  • Kim, Ho Jun;Chung, Gunhui;Lee, Do-Hun;Lee, Eun Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.405-414
    • /
    • 2011
  • The adaptive network-based fuzzy inference system (ANFIS) which had a success for time series prediction and system control was applied for modeling the hourly runoff in the Gapcheon watershed. The ANFIS used the antecedent rainfall and runoff as the input. The ANFIS was trained by varying the various simulation factors such as mean areal rainfall estimation, the number of input variables, the type of membership function and the number of membership function. The root mean square error (RMSE), mean peak runoff error (PE), and mean peak time error (TE) were used for validating the ANFIS simulation. The ANFIS predicted runoff was in good agreement with the measured runoff and the applicability of ANFIS for modelling the hourly runoff appeared to be good. The forecasting ability of ANFIS up to the maximum 8 lead hour was investigated by applying the different input structure to ANFIS model. The accuracy of ANFIS for predicting the hourly runoff was reduced as the forecasting lead hours increased. The long-term predictability of ANFIS for forecasting the hourly runoff at longer lead hours appeared to be limited. The ANFIS might be useful for modeling the hourly runoff and has an advantage over the physically based models because the model construction of ANFIS based on only input and output data is relatively simple.

An enhancement of GloSea5 ensemble weather forecast based on ANFIS (ANFIS를 활용한 GloSea5 앙상블 기상전망기법 개선)

  • Moon, Geon-Ho;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1031-1041
    • /
    • 2018
  • ANFIS-based methodology for improving GloSea5 ensemble weather forecast is developed and evaluated in this study. The proposed method consists of two steps: pre & post processing. For ensemble prediction of GloSea5, weights are assigned to the ensemble members based on Optimal Weighting Method (OWM) in the pre-processing. Then, the bias of the results of pre-processed is corrected based on Model Output Statistics (MOS) method in the post-processing. The watershed of the Chungju multi-purpose dam in South Korea is selected as a study area. The results of evaluation indicated that the pre-processing step (CASE1), the post-processing step (CASE2), pre & post processing step (CASE3) results were significantly improved than the original GloSea5 bias correction (BC_GS5). Correction performance is better the order of CASE3, CASE1, CASE2. Also, the accuracy of pre-processing was improved during the season with high variability of precipitation. The post-processing step reduced the error that could not be smoothed by pre-processing step. It could be concluded that this methodology improved the ability of GloSea5 ensemble weather forecast by using ANFIS, especially, for the summer season with high variability of precipitation when applied both pre- and post-processing steps.

Building a Traffic Accident Frequency Prediction Model at Unsignalized Intersections in Urban Areas by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 도시부 비신호교차로 교통사고예측모형 구축)

  • Kim, Kyung Whan;Kang, Jung Hyun;Kang, Jong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.137-145
    • /
    • 2012
  • According to the National Police Agency, the total number of traffic accidents which occurred in 2010 was 226,878. Intersection accidents accounts for 44.8%, the largest portion of the entire traffic accidents. An research on the signalized intersection is constantly made, while an research on the unsignalized intersection is yet insufficient. This study selected traffic volume, road width, and sight distance as the input variables which affect unsignalized intersection accidents, and number of accidents as the output variable to build a model using ANFIS(Adaptive Neuro-Fuzzy Inference System). The forecast performance of this model is evaluated by comparing the actual measurement value with the forecasted value. The compatibility is evaluated by R2, the coefficient of determination, along with Mean Absolute Error (MAE) and Mean Square Error (MSE), the indicators which represent the degree of error and distribution. The result shows that the $R^2$ is 0.9817, while MAE and MSE are 0.4773 and 0.3037 respectively, which means that the explanatory power of the model is quite decent. This study is expected to provide the basic data for establishment of safety measure for unsignalized intersection and the improvement of traffic accidents.

A $2{\times}2$ Microstrip Patch Antenna Array for Moisture Content Measurement of Paddy Rice (산물벼 함수율 측정을 위한 $2{\times}2$ 마이크로스트립 패치 안테나 개발)

  • 김기복;김종헌;노상하
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.97-106
    • /
    • 2000
  • To develop the grain moisture meter using microwave free space transmission technique, a 10.5GHz microwave signal with the power of 11mW generated by an oscillar with a dielectric resonator is transmitted to an isolator and radiated from a transmitting $2{\times}2$ microstrip patch array antenna into the sample holder filled with the 12 to 26%w.b. of Korean Hwawung paddy rice. the microwave signal, attenuated through the grain with moisture, is collected by a receiving $2{\times}2$ microstrip patch array antenna and detected using a Shottky diode with excellent high frequency characteristic. A pair of light and simple microstrip patch array antenna for measurement of grain moisture content is designed and implemented on atenflon substrate with trleative dielectric constant of 2.6 and thickness of 0.54 by using Ensemble ver. 4.02 software. The aperture of microstrip patch arrays is 41 mm width and 24mm high. The characteristics of microstrip patch antenna such as grain. return loss, and bandwidth are 11.35dBi, -38dB and 0.35GHz($50^{\circ}$ at far-field pattern of E and H plane. The width of the sample holder is large enough to cover the signal between the antennas temperature and bulk density respectively. The calibration model for measurement of grain moisture content is proposed to reduce the effects of fluectuations in bulk density and temperature which give serious errors for the measurements . From the results of regression analysis using the statistically analysis method, the moisture content of grain samples (MC(%)) is expressed in terms of the output voltage(v), temperature (t), and bulk density of samples(${\rho}b$)as follows ;$$MC(%)\;=\;(-3.9838{\times}10^{-8}{\times}v^{3}+8.023{\times}10^{-6}{\times}v^{2}-0.0011{\times}v-0.0004{\times}t+0.1706){\frac{1}{{\rho}b}}{\times}100$ Its determination coefficient, standard error of prediction(SEP) and bias were found to be 0.9855, 0.479%w.b. and -0.0.369 %w.b. respectively between measured and predicted moisture contents of the grain samples.

  • PDF

Soil Moisture Modelling at the Topsoil of a Hillslope in the Gwangneung National Arboretum Using a Transfer Function (전이함수를 통한 광릉 산림 유역의 토양수분 모델링)

  • Choi, Kyung-Moon;Kim, Sang-Hyun;Son, Mi-Na;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.2
    • /
    • pp.35-46
    • /
    • 2008
  • Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.

Combining Bias-correction on Regional Climate Simulations and ENSO Signal for Water Management: Case Study for Tampa Bay, Florida, U.S. (ENSO 패턴에 대한 MM5 강수 모의 결과의 유역단위 성능 평가: 플로리다 템파 지역을 중심으로)

  • Hwang, Syewoon;Hernandez, Jose
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.143-154
    • /
    • 2012
  • As demand of water resources and attentions to changes in climate (e.g., due to ENSO) increase, long/short term prediction of precipitation is getting necessary in water planning. This research evaluated the ability of MM5 to predict precipitation in the Tampa Bay region over 23 year period from 1986 to 2008. Additionally MM5 results were statistically bias-corrected using observation data at 33 stations over the study area using CDF-mapping approach and evaluated comparing to raw results for each ENSO phase (i.e., El Ni$\tilde{n}$o and La Ni$\tilde{n}$a). The bias-corrected model results accurately reproduced the monthly mean point precipitation values. Areal average daily/monthly precipitation predictions estimated using block-kriging algorithm showed fairly high accuracy with mean error of daily precipitation, 0.8 mm and mean error of monthly precipitation, 7.1 mm. The results evaluated according to ENSO phase showed that the accuracy in model output varies with the seasons and ENSO phases. Reasons for low predictions skills and alternatives for simulation improvement are discussed. A comprehensive evaluation including sensitivity to physics schemes, boundary conditions reanalysis products and updating land use maps is suggested to enhance model performance. We believe that the outcome of this research guides to a better implementation of regional climate modeling tools in water management at regional/seasonal scale.

System Development for Analysis and Compensation of Column Shortening of Reinforced Concrete Tell Buildings (철근콘크리트 고층건물 기둥의 부등축소량 해석 및 보정을 위한 시스템 개발)

  • 김선영;김진근;김원중
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.291-298
    • /
    • 2002
  • Recently, construction of reinforced concrete tall buildings is widely increased according to the improvement of material quality and design technology. Therefore, differential shortenings of columns due to elastic, creep, and shrinkage have been an important issue. But it has been neglected to predict the Inelastic behavior of RC structures even though those deformations make a serious problem on the partition wall, external cladding, duct, etc. In this paper, analysis system for prediction and compensation of the differential column shortenings considering time-dependent deformations and construction sequence is developed using the objected-oriented technique. Developed analysis system considers the construction sequence, especially time-dependent deformation in early days, and is composed of input module, database module, database store module, analysis module, and analysis result generation module. Graphic user interface(GUI) is supported for user's convenience. After performing the analysis, the output results like deflections and member forces according to the time can be observed in the generation module using the graphic diagram, table, and chart supported by the integrated environment.