• Title/Summary/Keyword: Output Nodes

Search Result 266, Processing Time 0.029 seconds

A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps (자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘)

  • Lee Jong-Sup;Kang Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.

A Clustering Algorithm using Self-Organizing Feature Maps (자기 조직화 신경망을 이용한 클러스터링 알고리듬)

  • Lee, Jong-Sub;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.257-264
    • /
    • 2005
  • This paper suggests a heuristic algorithm for the clustering problem. Clustering involves grouping similar objects into a cluster. Clustering is used in a wide variety of fields including data mining, marketing, and biology. Until now there are a lot of approaches using Self-Organizing Feature Maps(SOFMs). But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of k output-layer nodes, if they want to make k clusters. This approach has problems to classify elaboratively. This paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We can find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. We use the well known IRIS data as an experimental data. Unsupervised clustering of IRIS data typically results in 15 - 17 clustering error. However, the proposed algorithm has only six clustering errors.

Performance Improvement of Multilayer Perceptrons with Increased Output Nodes (다층퍼셉트론의 출력 노드 수 증가에 의한 성능 향상)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.123-130
    • /
    • 2009
  • When we apply MLPs(multilayer perceptrons) to pattern classification problems, we generally allocate one output node for each class and the index of output node denotes a class. On the contrary, in this paper, we propose to increase the number of output nodes per each class for performance improvement of MLPs. For theoretical backgrounds, we derive the misclassification probability in two class problems with additional outputs under the assumption that the two classes have equal probability and outputs are uniformly distributed in each class. Also, simulations of 50 isolated-word recognition show the effectiveness of our method.

Multiple-Output Combinational Digital Logic Systems based on Decision Diagram (결정도에 기초한 다중출력조합디지털논리시스템)

  • Park Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1288-1293
    • /
    • 2005
  • This paper presents a design method for multiple-output combinational digital logic systems using time domain based on multiplexing(TDBM) and common multi-terminal extension decision diagrams(CMTEDD). The CMIEDDs represents extension valued multiple-output functions, while TDBM systems transmit several signals on a single lines. The proposed method can reduce the 1)hardware, 2)logic levels and 3)pins. In the logic system design, we use two types of decision diagrams(DDs), that is the common binary decision diagrams(CBDDs) and CMTEDDs. Also, we propose an algorithms to derive common multiple-terminal binary decision diagrams(CMTBDD) from CBDDs, and CMTEDDs from CMTBDDs. The CMTEDDs over CBDDs is more compactness in terms of number of non-terminal nodes, where the nodes for output selection variables are not included in the non-terminal nodes. In the logic design, each non-terminal nodes of an CBDDs and an CMTEDDs is realized by a multiplexer(MUX). In addition, we compare the proposed TDBM realization with the conventional one.

Increasing Output Nodes for Performance Improvement of Multilayer Perceptrons (다층퍼셉트론의 성능향상을 위한 출력노드 수 증가)

  • Oh, Sang-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.13-15
    • /
    • 2006
  • When we use multilayer perceptron model for pattern classification probmems, we allocate one output node for each class. In this paper, we increase the number of output nodes for each class and investigate the performance of multilayer perceptrons through the simulation of isolated-word recognition problems.

  • PDF

Analysis of Graphs Using the Signal Flow Matrix (신호 흐름 행렬에 의한 그래프 해석)

  • 김정덕;이만형
    • 전기의세계
    • /
    • v.22 no.4
    • /
    • pp.25-29
    • /
    • 1973
  • The computation of transmittances between arbitrary input and output nodes is of particular interest in the signal flow graph theory imput. The signal flow matrix [T] can be defined by [X]=-[T][X] where [X] and [Y] are input nose and output node matrices, respectively. In this paper, the followings are discussed; 1) Reduction of nodes by reforming the signal flow matrix., 2) Solution of input-output relationships by means of Gauss-Jordan reduction method, 3) Extension of the above method to the matrix signal flow graph.

  • PDF

Seamless Transfer of Single-Phase Utility Interactive Inverters with a Synchronized Output Regulation Strategy

  • Xiang, Ji;Ji, Feifan;Nian, Heng;Zhang, Junming;Deng, Hongqiao
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1821-1832
    • /
    • 2016
  • This study presents a strategy using the synchronized output regulation method (SOR) for controlling inverters operating in stand-alone and grid-connected modes. From the view point of networked dynamic systems, SOR involves nodes with outputs that are synchronized but also display a desirable wave shape. Under the SOR strategy, the inverter and grid are treated as two nodes that comprise a simple network. These two nodes work independently under the stand-alone mode. An intermediate mode, here is named the synchronization mode, is emphasized because the transition from the stand-alone mode to the grid-connected mode can be dealt as a standard SOR problem. In the grid-connected mode, the inverter operates in an independent way, in which the voltage reference changes for generalized synchronization where its output current satisfies the required power injection. Such a relatively independent design leads to a seamless transfer between operation modes. The closed-loop system is analyzed in the state space on the basis of the output regulation theory, which improves the robustness of the design. Simulations and experiments are performed to verify the proposed control strategy.

Energy Saving in Cluster-Based Wireless Sensor Networks through Cooperative MIMO with Idle-Node Participation

  • Fei, Li;Gao, Qiang;Zhang, Jun;Wang, Gang
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.231-239
    • /
    • 2010
  • In cluster-based wireless sensor networks, the energy could be saved when the nodes that have data to transmit participate in cooperative multiple-input multiple-output (MIMO). In this paper, by making the idle nodes that have no data to transmit participate in the cooperative MIMO, it is found that much more energy could be saved. The number of the idle nodes that participate in the cooperative MIMO is optimized to minimize the total energy consumption. It is also found that the optimal number of all the nodes participating in cooperative communication does not vary with the number of nodes that have data to transmit. The proposition is proved mathematically. The influence of long-haul distance and modulation constellation size on the total energy consumption is investigated. A cooperative MIMO scheme with help-node participation is proposed and the simulation results show that the proposed scheme achieves significant energy saving.

Energy-Efficient Cooperative Beamforming based CMISO Transmission with Optimal Nodes Deployment in Wireless Sensor Networks

  • Gan, Xiong;Lu, Hong;Yang, Guangyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3823-3840
    • /
    • 2017
  • This paper analyzes the nodes deployment optimization problem in energy constrained wireless sensor networks, which multi-hop cooperative beamforming (CB) based cooperative-multi-input-single-output (CMISO) transmission is adopted to reduce the energy consumption. Firstly, we establish the energy consumption models for multi-hop SISO, multi-hop DSTBC based CMISO, multi-hop CB based CMISO transmissions under random nodes deployment. Then, we minimize the energy consumption by searching the optimal nodes deployment for the three transmissions. Furthermore, numerical results present the optimal nodes deployment parameters for the three transmissions. Energy consumption of the three transmissions are compared under optimal nodes deployment, which shows that CB based CMISO transmission consumes less energy than SISO and DSTBC based CMISO transmissions. Meanwhile, under optimal nodes deployment, the superiorities of CB based CMISO transmission over SISO and DSTBC based CMISO transmissions can be more obvious when path-loss-factor becomes low.

Performance Analysis of Layer Pruning on Sphere Decoding in MIMO Systems

  • Karthikeyan, Madurakavi;Saraswady, D.
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.564-571
    • /
    • 2014
  • Sphere decoding (SD) for multiple-input and multiple-output systems is a well-recognized approach for achieving near-maximum likelihood performance with reduced complexity. SD is a tree search process, whereby a large number of nodes can be searched in an effort to find an estimation of a transmitted symbol vector. In this paper, a simple and generalized approach called layer pruning is proposed to achieve complexity reduction in SD. Pruning a layer from a search process reduces the total number of nodes in a sphere search. The symbols corresponding to the pruned layer are obtained by adopting a QRM-MLD receiver. Simulation results show that the proposed method reduces the number of nodes to be searched for decoding the transmitted symbols by maintaining negligible performance loss. The proposed technique reduces the complexity by 35% to 42% in the low and medium signal-to-noise ratio regime. To demonstrate the potential of our method, we compare the results with another well-known method - namely, probabilistic tree pruning SD.