• Title/Summary/Keyword: Output Module

Search Result 1,023, Processing Time 0.031 seconds

Effects of Ambient Temperature on the Thermal Characteristics of Photovoltaic Modules (대기온도에 따른 태양전지 모듈의 열적 특성에 관한 연구)

  • Kim, Jong-Pil;Jeon, Chung-Hwan;Chang, Young-June
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.48-52
    • /
    • 2008
  • The photovoltaic modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This paper presents that the PV module temperature can be estimated by using thermal analysis programs, and demonstrates the thermal characteristics of the PV module.

  • PDF

A Study on the Thermal Characteristics of Photovoltaic Modules (태양전지 모듈의 열적 특성에 관한 연구)

  • Kim, Jong-Pil;Park, Hyun-Woo;Jeon, Chung-Hwan;Chang, Young-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.121-123
    • /
    • 2008
  • The PV modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This is called the ‘hot spot’ formation. This paper presents that the PV module temperature can be estimated by using a thermal analysis program, and demonstrates the thermal characteristics of the PV module.

  • PDF

Fabrication of Switch Module for ATM Exchange System using MCM Technology (멀티칩 기술을 이용한 ATM 교환기용 Switch 모듈 제작)

  • Ju, Cheol-Won;Kim, Chang-Hun;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.433-437
    • /
    • 2000
  • We fabricated switch module of ATM(Asynchronous Transfer Mode) exchange system with MCM-C(MultiChip Module Co-fired) technology and measured its electrical characteristics. Green tape was used as substrate and Au/Ag paste was used to form the interconnect layers. The via holes were made by drill and filled with metal paste usign screen method. After manufacturing the substrate, chips and passive components were assembled on the substrate. In electrical test, the module showed the output signal of 46.9MHz synchronized with input signal. In the view of substrate size reduction, the area of MCM switch module was 35% of conventional hybrid switch module.

  • PDF

Development of Post-processing Modules in an Integrated System for Reinforced Concrete Structures Using Object-Oriented Techniques (객체지향 기법을 이용한 RC통합 구조설계 시스템의 후처리 모듈 개발)

  • 이진우;천진호;김우범;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.352-361
    • /
    • 1998
  • The post-processing modules are parts of an integrated system for reinforced concrete structures. This modules are composed of two modules: member design module and calculation report module. The purpose of this paper is to develope modules that increase efficiency and usefulness of an integrated system used reinforced concrete structures design. The development of post-processing modules is necessary for user to design reinforced concrete structures conveniently and quickly. This modules are connected with central database for the benefit of storing amount of input/output data and being used system with little effort. Post-processing modules used Object-Oriented concepts and techniques include identity, classification, polymorphism, and inheritance. Member design module automatically converts no good members into satisfied members by changing section size or reinforcement bar arrangement. This module can be operated both independent member design modules with user input and a part of integrated system with database input. If user operates member design module, calculation report module is created automatically.

  • PDF

Research Plan to improve Power Generation Efficiency of Photovoltaic Units using Photovoltaic Module Cooling System (태양광모듈 냉각장치를 이용한 태양광발전장치 발전효율 향상을 위한 연구방안)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.199-204
    • /
    • 2020
  • In case of the silicon solar panel being used in Korea, the production specification is designed to give maximum output at the limit of -0.5 to 0.05℃, so the output of 0.45~0.55% decreases when the temperature rises by 1℃. As a result, the photovoltaic power generation is reduced according to the surface temperature rise of the photovoltaic module due to the characteristics of the solar cell. The decrease in output reduces the efficiency of photovoltaic power generation, and if the efficiency decreases, the result is that the profit of electricity sales according to the amount of photovoltaic power generation decreases. Therefore, this paper proposes a method of spraying cooling air to the lower (or surrounding) of the photovoltaic module when it is identified above the set temperature by the temperature detection sensor. In addition, the amount of power generated is increased by utilizing the lost solar energy, and by applying cooling function through cooling air, the power generation can be further increased.

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.

High Power Density Open-frame Type DC-DC Converter Module with Constant Current Control (정전류 제어 기능이 부가된 고전력밀도의 개방형 DC-DC 컨버터 모듈)

  • Lee Darl-Woo;Ahn Tae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.380-387
    • /
    • 2005
  • We report the performance of an open-frame type low-voltage high-current DC-DC converter module developed using an active clamp forward converter circuit and single ended rectifier. The converter module is designed with the specifications of an 3.3V output voltage, 30A output current, 100W output power and 36-75V input voltage. The synchronous rectifier is used to reduce the conduction loss at high current level and constant current control using precision PCB resistance is adapted to enhance the over current protection function in the system configuration. A prototype converter module is successfully implemented within 8mm height and quarter brick size (58x37mm) and recorded an $95W/in^3$ power density, 90.6$\%$ efficiency and 0.07$\%$ voltage regulation for the entire Input voltage range, thereby demonstrating its application potentials to future telecommunication electronics.

Study on Shingled String Interconnection for High Power Solar Module (고출력 슁글드 태양광 모듈 제작을 위한 스트링 연결에 관한 연구)

  • Kim, Juhwi;Kim, Junghoon;Jeong, Chaehwan;Choi, Wonyoung;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.449-453
    • /
    • 2021
  • Interest and investment in renewable energy have increased worldwide, highlighting the need for renewable energy. Solar energy was the most promising energy of all renewable energy sources, and it has the highest investment value. Because photovoltaics require a certain amount of area for installation, high density and high output performance are required. Shingled module is a promising technology in that they are featured by higher density and higher output compared to the conventional modules. Shingled technology uses a laser scribing to divide solar cells that are to be bonded with electrically conductive adhesive (ECA) to produce and connect strings, which has a higher output in the same area than the conventional modules. In the process of producing solar modules, metal ribbons are used to interconnect cells, but they are also needed for string connections in shingled solar cells. Accordingly, in this study, we researched the interconnection that best suits the connector that joins the string to the string. The module outputs produced under the conditions of the string interconnection were compared and analyzed.

Design of Modular DC / DC Converter Design with Programmable Output Voltage (출력전압 제어 가능한 모듈형 DC/DC 컨버터 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.345-350
    • /
    • 2019
  • This study deals with the design of a modular converter that can convert the output voltage according to the size of the load. The efficiency of the converter depends on the size of the load and is generally less efficient for lower loads. Therefore, it is more efficient to construct a small capacity modular converter than to manufacture a large capacity converter and it determines the capacity of the system through the parallel connection of the converter module according to the load size. In this paper, we will introduce a modular DC / DC converter designed to control the number of modules according to the load. A programmable resistor is placed at the output of the module for parallel connection of the module, and the voltage is regulated by adjusting the variable resistor. A system controlled in this way was found to exhibit an efficiency improvement of about 32%.

A Fully-Integrated Penta-Band Tx Reconfigurable Power Amplifier with SOI CMOS Switches for Mobile Handset Applications

  • Kim, Unha;Kang, Sungyoon;Kim, Junghyun;Kwon, Youngwoo
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.214-223
    • /
    • 2014
  • A fully-integrated penta-band reconfigurable power amplifier (PA) is developed for handset Tx applications. The output structure of the proposed PA is composed of the fixed output matching network, power and frequency reconfigurable networks, and post-PA distribution switches. In this work, a new reconfiguration technique is proposed for a specific band requiring power and frequency reconfiguration simultaneously. The design parameters for the proposed reconfiguration are newly derived and applied to the PA. To reduce the module size, the switches of reconfigurable output networks and post-PA switches are integrated into a single IC using a $0.18{\mu}m$ silicon-on-insulator CMOS process, and a compact size of $5mm{\times}5mm$ is thus achieved. The fabricated W-CDMA PA module shows adjacent channel leakage ratios better than -39 dBc up to the rated linear power and power-added efficiencies of higher than around 38% at the maximum linear output power over all the bands. Efficiency degradation is limited to 2.5% to 3% compared to the single-band reference PA.