• 제목/요약/키워드: Output Inductor

검색결과 482건 처리시간 0.024초

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

Implementation of a Sliding Mode Controller for Single Ended Primary Inductor Converter

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.39-53
    • /
    • 2015
  • This paper presents the regulation of the output voltage and inductor currents in a Single Ended Primary Inductor Converter (SEPIC), operating in the continuous conduction mode (CCM) using a sliding mode controller. Owing to the time varying nature of the SEPIC converter, designing a feedback controller is a challenging task. In order to improve the dynamic performance of the SEPIC, a Sliding Mode Controller (SMC) is developed. The developed SMC is designed by using a state space average model. The performance of the developed controller with the SEPIC converter is validated at different working conditions through Matlab simulations. It is also compared with the performance while using a PI controller. The results show that the designed controller gives very good output voltage regulation under different operating conditions such as a varying input voltage, changes in the load and component variations. A 48V, 46W experimental setup for has been developed in an analog platform to validate the performance of the proposed SMC.

Research on High Efficiency Non-Isolated Push-Pull Converters with Continuous Current in Solar-Battery Systems

  • Li, Yan;Zheng, Trillion Q.;Chen, Qian
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.432-443
    • /
    • 2014
  • In order to improve the output efficiency of solar cells and to extend the life span of batteries, the input currents of converters are required to be continuous. If low output voltage ripple is required at the same time, it is obvious that the application of basic two-order converters (such as Buck and Boost derived converters) will not be good enough. In this paper, a lot of non-isolated push-pull converters (NIPPCs) with continuous current will be introduced due to their lower current stress, higher efficiency and better EMC performance. By decomposing the converters into push-pull cells, inductor and free-wheeling diodes, two families of NIPPCs based on single inductor and coupled inductor separately are systematically generated. Furthermore, characteristics analyses for some of the generated converters are also shown in this paper. Finally, two prototypes based on the corresponding typical topologies are built in the lab to verify the theoretical outcomes.

Switched Capacitor Based High Gain DC-DC Converter Topology for Multiple Voltage Conversion Ratios with Reduced Output Impedance

  • Priyadarshi, Anurag;Kar, Pratik Kumar;Karanki, Srinivas Bhaskar
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.676-690
    • /
    • 2019
  • This paper presents a switched capacitor (SC) based bidirectional dc-dc converter topology for high voltage gain applications. The proposed converter is able to operate with multiple integral voltage conversion ratios based on user input. The architecture of a user-friendly, inductor-less multi-voltage-gain bidirectional dc-dc converter is proposed in this study. The inductor-less or magnetic-less design of the proposed converter makes it effective in higher temperature applications. Furthermore, the proposed converter has a reduced component count and lower voltage stress across its switches and capacitors when compared to existing SC converters. An output impedance analysis of the proposed converter is presented and compared with popular existing SC converters. The proposed converter is simulated in the OrCAD PSpice environment and the obtained results are presented. A 200 W hardware prototype of the proposed SC converter has been developed. Experimental results are presented to validate the efficacy of the proposed converter.

Comparison of Active-Clamp and ZVT Techniques Applied to Tapped-Inductor DC-DC Converter with Low Voltage and Bigh Current

  • Abe, Seiya;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.199-205
    • /
    • 2002
  • This paper compares three kinds of soft-switching circuits from viewpoints of surge suppression, load characteristic, and power efficiency for a tapped-inductor buck converter with low voltage and high current. As a result, these soft-switching techniques have achieved much higher efficiency of 80 % when compared with a hard-switching buck converter for the output condition of 1V and 20A.

Non-isolated Boost Charger for the Li-Ion Batteries Suitable for Fuel Cell Powered Laptop Computers

  • Sang, Nguyen Van;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.31-39
    • /
    • 2013
  • The conventional non-isolated boost converter has some drawbacks such as poor dynamic performance and a discontinuous output current, which make it unsuitable for battery charging applications. In spite of its compactness and lightness, it is not preferred as a charger of portable electronic devices. In this paper, a non-isolated boost converter topology for Li-ion batteries suitable for fuel cell powered laptop computers is proposed and analyzed. The proposed converter has an additional inductor at the output to make a continuous output current. This feature makes it suitable for charger applications by eliminating the disadvantages of the conventional non-isolated boost converter mentioned above. A prototype of the proposed converter is built for the Li-ion battery charger of a laptop computer to prove the validity and advantages of the proposed topology.

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator

  • Park, Hyung-Gu;Kim, SoYoung;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.198-206
    • /
    • 2013
  • This paper presents a wide band, fine-resolution digitally controlled oscillator (DCO) with an on-chip 3-D solenoid inductor using the 0.13 ${\mu}m$ digital CMOS process. The on-chip solenoid inductor is vertically constructed by using Metal and Via layers with a horizontal scalability. Compared to a spiral inductor, it has the advantage of occupying a small area and this is due to its 3-D structure. To control the frequency of the DCO, active capacitor and active inductor are tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO with solenoid inductor is fabricated in 0.13 ${\mu}m$ process and the die area of the solenoid inductor is 0.013 $mm^2$. The DCO tuning range is about 54 % at 4.1 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The measured phase noise of the DCO output at 5.195 GHz is -110.61 dBc/Hz at 1 MHz offset.

배압회로를 이용한 고승압 컨버터 (High Boost Converter Using Voltage Multiplier)

  • 백주원;김종현;류명효;유동욱;김종수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권8호
    • /
    • pp.416-422
    • /
    • 2006
  • With the increasing demand for renewable energy, distributed power included in fuel cells have been studied and developed as a future energy source. For this system, a power conversion circuit is necessary to interface the generated power to the utility. In many cases, a high step-up dc/dc converter is needed to boost low input voltage to high voltage output. Conventional methods using cascade dc/dc converters cause extra complexity and higher cost. The conventional topologies to get high output voltage use flyback dc/dc converters. They have the leakage components that cause stress and loss of energy that results in low efficiency. This paper presents a high boost converter with a voltage multiplier and a coupled inductor. The secondary voltage of the coupled inductor is rectified using a voltage multiplier and series-connected with the boost voltage of primary voltage of the coupled inductor. Therefore, high boost voltage is obtained with low duty cycle. Theoretical analysis and experimental results verify the proposed solutions using a 300W prototype.

A Highly Power-Efficient Single-Inductor Multiple-Outputs (SIMO) DC-DC Converter with Gate Charge Sharing Method

  • Nam, Ki-Soo;Seo, Whan-Seok;Ahn, Hyun-A;Jung, Young-Ho;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.549-556
    • /
    • 2014
  • This paper proposes a highly power-efficient single-inductor multiple-outputs (SIMO) DC-DC converter with a gate charge sharing method in which gate charges of output switches are shared to improve the power efficiency and to reduce the switching power loss. The proposed converter was fabricated by using a $0.18{\mu}m$ CMOS process technology with high voltage devices of 5 V. The input voltage range of the converter is from 2.8 V to 4.2 V, which is based on a single cell lithium-ion battery, and the output voltages are 1.0 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V. Using the proposed gate charge sharing method, the maximum power efficiency is measured to be 87.2% at the total output current of 450 mA. The measured power efficiency improved by 2.1% compared with that of the SIMO DC-DC converter without the proposed gate charge sharing method.

Two-Phase Hybrid Forward Convertor with Series-Parallel Auto-Regulated Transformer Windings and a Common Output Inductor

  • Wu, Xinke;Chen, Hui
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.757-765
    • /
    • 2013
  • For conventional interleaved two-phase forward converters with a common output inductor, the maximum duty cycle is 0.5, which limits the voltage range and increases the difficulty of the transformer's optimization. A new two-phase hybrid forward converter with series-parallel auto-regulated transformer windings is presented in this paper. With interleaved control signals for the two phases, the secondary windings of the transformers can work in series when the duty cycle is larger than 0.5, and they can work in parallel when duty cycle is lower than 0.5. Therefore, the maximum duty cycle is extended and the turns ratio of the transformer can be optimized. Duty cycle dependent auto-regulated windings result in the steady states of the converter being different in different duty cycle ranges (D>0.5 and D<0.5). Fortunately, the steady state gains of the proposed hybrid converter are identical at different duty cycle ranges, which means a stepless shift between two states. A prototype is built to verify the theoretical analysis. A conventional control loop is compatible for the whole input voltage range and load range thanks to the stepless shifting between the different duty cycle ranges.