Two phase sampling (double sampling) is often used when there is inadequate population information for proper stratification. Many recent papers have been devoted to the estimation method to improve the precision of the estimator using first phase information. In this study we suggested outlier weight adjustment methods to improve estimation precision based on the weight of the generalized ratio-cum-product estimator. Small simulation studies are conducted to compare the suggested methods and the usual method. Real data analysis is also performed.
Journal of the Korean Operations Research and Management Science Society
/
v.36
no.1
/
pp.39-55
/
2011
Process monitoring has been emphasized for the monitoring of complex system such as chemical processing industries to achieve the efficiency enhancement, quality management, safety improvement. Recently, ICA (Independent Component Analysis) based MSPC (Multivariate Statistical Process Control) was widely used in process monitoring approaches. Moreover, DICA (Dynamic ICA) has been introduced to consider the system dynamics. However, the existing approaches show the limitation that their performances are strongly dependent on the statistical distributions of control variables. To improve the limitation, we propose a novel approach for process monitoring by integrating DICA and LOF (Local Outlier Factor). In this paper, we aim to improve the fault detection rate with the proposed method. LOF detects local outliers by using density of surrounding space so that its performance is regardless of data distribution. Therefore, the proposed method not only can consider the system dynamics but can also assure robust performance regardless of the statistical distributions of control variables. Comparison experiments were conducted on the widely used benchmark dataset, Tennessee Eastman process (TE process), and showed the improved performance than existing approaches.
Recently several authors have introduced iterative methods for detecting time series outliers. Most of these methods are developed under the assumption that an underlying outlier-free model is known or can be identified. Since outliers can distort model identification or even make it impossible, we propose procedure begins with a descriptive data analysis of a time series using distance measures between two observations. Properties of the proposed test statistic are presented. To distinguish the type of an outlier are used transfer function models. An empirical example is given to illustrate the time series modeling procedure.
The Journal of Asian Finance, Economics and Business
/
v.8
no.10
/
pp.239-247
/
2021
Central Bank authorities should carefully manage inflation rate uncertainties to achieve economic growth and development not only in the short-run but also in the long-run. Since inflation is a key macroeconomic variable, an increased understanding about its behavior is undoubtedly important. Thus, paper employs unit root with breakpoints to examine the mean reverting behavior of inflation rate in the Philippines using monthly data from 2002 to 2020. Empirically, the unit root breakpoint innovational and additive outlier tests favor the stationarity or mean reverting behavior of inflation in the Philippines. Also, results of standard unit root tests, ADF, PP, GLS-Dickey-Fuller, KPSS and NP, provide strong evidence of mean reverting processes. The mean reverting behavior of inflation rate reveals that the monetary policy using inflation targeting framework has succeeded in reducing chronic inflation persistence in the Philippines. Thus, this research supports inflation targeting policy that aims to maintain general price level stability for the Philippine economy's long-term growth and development prospects. The findings of this research remain important for the central bankers for not only providing them better understanding about the behavior of inflation rate, but also helping them formulate and implement policy reforms related to money, credit and banking.
Feng, Yaping;Syrkin-Nikolau, Judith A.;Wurtele, Eve S.
Interdisciplinary Bio Central
/
v.5
no.1
/
pp.1.1-1.8
/
2013
High quality publicly-available transcriptomic data representing relationships in gene expression across a diverse set of biological conditions is used as a context network to explore transcriptomics of the CNS. The context network, 18367Hu-matrix, contains pairwise Pearson correlations for 22,215 human genes across18,637 human tissue samples1. To do this, we compute a network derived from biological samples from CNS cells and tissues, calculate clusters of co-expressed genes from this network, and compare the significance of these to clusters derived from the larger 18367Hu-matrix network. Sorting and visualization uses the publicly available software, MetaOmGraph (http://www.metnetdb.org/MetNet_MetaOm-Graph.htm). This identifies genes that characterize particular disease conditions. Specifically, differences in gene expression within and between two designations of glial cancer, astrocytoma and glioblastoma, are evaluated in the context of the broader network. Such gene groups, which we term outlier-networks, tease out abnormally expressed genes and the samples in which this expression occurs. This approach distinguishes 48 subnetworks of outlier genes associated with astrocytoma and glioblastoma. As a case study, we investigate the relationships among the genes of a small astrocytoma-only subnetwork. This astrocytoma-only subnetwork consists of SVEP1, IGF1, CHRNA3, and SPAG6. All of these genes are highly coexpressed in a single sample of anaplastic astrocytoma tumor (grade III) and a sample of juvenile pilocytic astrocytoma. Three of these genes are also associated with nicotine. This data lead us to formulate a testable hypothesis that this astrocytoma outlier-network provides a link between some gliomas/astrocytomas and nicotine.
Korea Atomic Energy Research Institute (KAERI) constructed the KURT (KAERI Underground Research Tunnel) to analyze the hydrogeological/geochemical characteristics of deep rock mass. Numerous boreholes have been drilled to conduct various field tests. The selection of suitable investigation intervals within a borehole is of great importance. When objectives are centered around hydraulic flow and groundwater sampling, intervals with sufficient groundwater flow are the most suitable. This study defines such points as hydraulic outliers and aimed to detect them using borehole geophysical logging data (temperature and EC) from a 1 km depth borehole. For systematic and efficient outlier detection, machine learning algorithms, such as DBSCAN, OCSVM, kNN, and isolation forest, were applied and their applicability was assessed. Following data preprocessing and algorithm optimization, the four algorithms detected 55, 12, 52, and 68 outliers, respectively. Though this study confirms applicability of the machine learning algorithms, it is suggested that further verification and supplements are desirable since the input data were relatively limited.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.5
/
pp.97-104
/
2024
As indoor air pollution has emerged as a social issue since the COVID-19 pandemic, pollution management in large-scale facilities has been recognized as an important task. For this purpose, this study proposes real-time pollution level detection using sensors and efficient control path setting using Dijkstra algorithm as key technologies. In addition, by introducing outlier determination algorithm and priority algorithm, we propose ways to increase the reliability of the data and enable efficient control work. The outlier determination algorithm describes the process of identifying and processing outliers based on sensor data in an environmental monitoring system. It describes in detail the process of averaging the recent 10 sensor data, calculating the Z-score to detect outliers, and removing and replacing the data determined to be outliers. The priority algorithm describes the process of establishing an efficient control path in consideration of the pollution level of each region. It suggests how to select the most polluted areas first and use them as a starting point to set the control path. In addition, it introduces an iterative process of detecting and responding to the pollution level in real time, which allows the system to be continuously optimized and to respond to environmental pollution. Through this, it is expected to increase the reliability and efficiency of the environmental monitoring system through outlier judgment algorithms and priority algorithms, thereby quickly identifying and responding to pollution situations.
Se-Chan, Park;Deok-Yeop, Kim;Kang-Bok, Seo;Woo-Jin, Lee
KIPS Transactions on Software and Data Engineering
/
v.11
no.12
/
pp.489-498
/
2022
Recently, the textile industry, which is labor-intensive, is attempting to reduce process costs and optimize quality through artificial intelligence. However, the fiber spinning process has a high cost for data collection and lacks a systematic data collection and processing system, so the amount of accumulated data is small. In addition, data imbalance occurs by preferentially collecting only data with changes in specific variables according to the purpose of fiber spinning, and there is an error even between samples collected under the same fiber spinning conditions due to difference in the measurement environment of physical properties. If these data characteristics are not taken into account and used for AI models, problems such as overfitting and performance degradation may occur. Therefore, in this paper, we propose an outlier handling technique and data augmentation technique considering the characteristics of the spinning process data. And, by comparing it with the existing outlier handling technique and data augmentation technique, it is shown that the proposed technique is more suitable for spinning process data. In addition, by comparing the original data and the data processed with the proposed method to various models, it is shown that the performance of the tensile tenacity and elongation prediction model is improved in the models using the proposed methods compared to the models not using the proposed methods.
Kim, Han-Saem;Kim, Hyun-Ki;Shin, Si-Yeol;Chung, Choong-Ki
Journal of the Korean Geotechnical Society
/
v.27
no.7
/
pp.59-68
/
2011
Subsurface Investigation results always reflect a level of soil uncertainty, which sometimes requires statistical corrections of the data for the appropriate engineering decision. This study suggests a closed-form framework to extract the outlying data points from the testing results using the statistical geo-spatial information analyses with outlier analysis and kring-based crossvalidation. The suggested analysis method is conducted to soil stratification using the borehole data in Yeouido.
In this paper the potential of the principal component analysis(PCA) technique for the application of detecting leaks in water pipe networks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study which were designed to extract a partial set of flow data from the original 24 hour flow data so that the effective outlier detection rate was maximized. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The developed algorithm may be applied in determining further leak detection field work for water distribution blocks that have more than 70% of the effective outlier detection rate. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks by considering series of leak reports happening in a relatively short period.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.