1 |
Almansour, A. Y., Alzoubi, H. M., Almansour, B. Y., & Almansour, Y. M. (2021). The Effect of Inflation on Performance: An Empirical Investigation on the Banking Sector in Jordan. Journal of Asian Finance, Economics and Business, 8(6), 97-102. https://doi.org/10.13106/jafeb.2021.vol8.no6.0097
DOI
|
2 |
Altissimo, F., Ehrmann, M., & Smets, F. (2006). Inflation Persistence and Price-Setting Behaviour in the Euro Area. A Summary of the IPN Evidence. ECB Occasional Paper Series 46. Retrieved March 28, 2021, from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=807420
|
3 |
Corvoisier, S., & Mojon, B. (2005). Breaks in the mean of inflation: how they happen and what to do with them. ECB Working Paper 451. Retrieved April 18, 2021, from https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp451.pdf
|
4 |
Debelle, G., & Wilkinson, J. (2002). Inflation targeting and the inflation process: Some lessons from an open economy. Reserve Bank of Australia Research Discussion Paper 2002-01. Retrieved June 08, 2021, from https://www.rba.gov.au/publications/rdp/2002/pdf/rdp2002-01.pdf
|
5 |
Cagan, P. (1956). The Monetary Dynamics of Hyperinflation, In: Friedman, M. (ed.), Studies in the Quantity Theory of Money, Chicago, IL: University of Chicago Press.
|
6 |
Cecchetti, S., Debelle, G., Arelland, M., & Gournchas, P. (2006). Has the Inflation Process Changed? Economic Policy, 21(46), 313-352. Retrieved April 18, 2021, from http://www.jstor.org/stable/3601028.
|
7 |
Chang, T., Ranjbar, O., & Tang, D. P. (2013). Revisiting the Mean Reversion of Inflation Rates for 22 OECD Countries. Economic Modelling, 30, 245-252. https://doi.org/10.1016/j.econmod.2012.09.018
DOI
|
8 |
Clark, T. (2003). Disaggregated evidence on the persistence of consumer price inflation. Federal Reserve Bank of Kansas City Working Paper 03-11. Retrieved April 18, 2021, from https://ideas.repec.org/p/fip/fedkrw/rwp03-11.html
|
9 |
Culver, S. E., & Papell, D. H. (1997). Is There a Unit Root in the Inflation Rate? Evidence from Sequential Break and Panel Data Models. Journal of Applied Econometrics, 12(4), 435-444.
DOI
|
10 |
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74, 427-431. https://doi.org/10.2307/2286348
DOI
|
11 |
Dias, D. A., & Marques, C. R. (2010). Using mean reversion as a measure of persistence. Economic Modeling, 27(1), 262-273.
DOI
|
12 |
Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient Tests for an Autoregressive Unit Root. Econometrica, 64(4), 813-836. https://doi.org/10.2307/2171846
DOI
|
13 |
Gaglianone, W. P., de Carvalho Guillen, O. T., & Figueiredo, F. M. R. (2018). Estimating Inflation Persistence by Quantile Autoregression with Quantile-specific Unit Roots. Economic Modelling, 73, 407-430. https://doi.org/10.1016/j.econmod.2018.04.018
DOI
|
14 |
Gregoriou, A., & Kontonikas, A. (2006). Inflation targeting and the stationarity of inflation: New results from an ESTAR unit root test. Bulletin of Economic Research, 54(4), 309-322. https://doi.org/10.1111/ j.0307-3378.2006.00246.x
DOI
|
15 |
Osman, M. (2021). Persistence, mean reversion, and nonlinearities in inflation rates in the GCC countries: an eclectic approach. Applied Economics, 53(8), 913-923. https://doi.org/10.1080/00036846.2020.1819950
DOI
|
16 |
Lee, C. C., & Chang C. P. (2007). Mean Reversion of Inflation Rates in 19 OECD Countries: Evidence from Panel LM Unit Root Tests with Structural Breaks. Economics Bulletin, 23(3), 1-15. Retrieved June 08, 2021, from http://www.accessecon.com/pubs/EB/2007/Volume3/EB-05C30022A.pdf
|
17 |
Lee, H. Y., & Wu, J. L. (2001). Mean Reversion of Inflation Rates: Evidence from 13 OECD Countries. Journal of Macroeconomics, 23(3), 477-487. Retrieved June 08, 2021, from http://econ.ccu.edu.tw/publications/publication_Lee/20.pdf
DOI
|
18 |
Levin, A., & Piger, J. (2003). Is inflation persistence intrinsic in industrial economies? Federal Reserve Bank of St. Louis Working Paper 2002-023. Retrieved June 08, 2021, from https://research.stlouisfed.org/wp/more/2002-023/
|
19 |
Narayan, P. K., & Narayan, S. (2010). Is there a unit root in the inflation rate? New evidence from panel data models with multiple structural breaks. Applied Economics, 42(13), 1661-1670. https://doi.org/10.1080/00036840701721596
DOI
|
20 |
Ng, S., & Perron, P. (2001). Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power. Econometrica, 69, 1519-1554. Retrieved June 08, 2021, from http://fmwww.bc.edu/EC-P/wp369.pdf
DOI
|
21 |
Osterholm, P. (2009). The Time-Series Properties of Norwegian Inflation and Nominal Interest Rate. Applied Economics, 41(10), 1303-1309. https://doi.org/10.10.1080/00036840701537828
DOI
|
22 |
Gregoriou, A., & Kontonikas, A. (2009). Modeling the behavior of inflation deviations from the target. Economic Modelling, 26(1), 90-95. https://doi.org/10.1016/j.econmod.2008.05.003
DOI
|
23 |
Peng, W. (1995). The Fisher Hypothesis and Inflation Persistence-Evidence from Five Major Industrial Countries. IMF Working Paper WP/95/118. Retrieved June 08, 2021, from https://ssrn.com/abstract=883264
|
24 |
Gil-Alana, L., Yaya, O., Enitan A. & Solademi, E. (2016). Testing unit roots, structural breaks and linearity in the inflation rates of the G7 countries with fractional dependence techniques. Applied Stochastic Models in Business and Industry, 32(5), 711-724. https://doi.org/10.1002/asmb.2189
DOI
|
25 |
Chen, S. W., Hsu, C. S., & Pen, C. J. (2016). Are Inflation Rates Mean-reverting Processes? Evidence from Six Asian Countries. Journal of Economics and Management, 12(1), 119-155. Retrieved April 18, 2021, from http://www.jem.org.tw/content/pdf/Vol.12No.1/05.pdf
|
26 |
Gil-Alana, L., & Gupta, R. (2019). Persistence, Mean Reversion and Nonlinearities in Inflation Rates of Developed and Developing Countries Using over One Century of Data. The Manchester School, 87(1), 24-36. https://doi.org/10.1111/manc.12213
DOI
|
27 |
Herve, D. (2018). Re-Examining the Mean Reversion of Inflation Rate in ECOWAS. Asian Economic and Financial Review, 8(5), 653-668. https://doi.org/10.18488/journal.aefr.2018.85.653.668
DOI
|
28 |
Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for Unit Roots in Heterogeneous Panels. Journal of Econometrics, 115(1), 53-74. https://doi.org/10.1016/S0304-4076(03)00092-7
DOI
|
29 |
Lee, C. C., & Chang, C. P. (2008). Trend stationary of inflation rates: Evidence from LM unit root testing with a long span of historical data. Applied Economics, 40(19), 2523-2536. https://doi.org/10.1080/00036840600970138
DOI
|
30 |
Levin, A., & Lin, C. F. (1992). Unit Root Test in Panel Data: Asymptotic and Finite Sample Properties. Discussion Paper. Retrieved June 08, 2021, from https://www.researchgate.net/
|
31 |
Hadizadeh, A. (2020). A Study of Testing Mean Reversion in the Inflation Rate of Iran's Provinces: New Evidence Using Quantile Unit Root Test. Iran Economic Review, 24(2), 371-392. https://dx.doi.org/10.22059/ier.2020.76009
DOI
|
32 |
Henry, O. T., & Shields, K. (2004). Is there a unit root in inflation? Journal of Macroeconomics, 26(3), 481-500. https://doi.org/10.1016/j.jmacro.2003.03.003
DOI
|
33 |
Ho, T. W. (2008). The Inflation Rates May Accelerate After All: Panel Evidence from 19 OECD Economies. Empirical Economics, 36(1), 55-64. https://doi.org/10.1007/s00181-008-0186-1
DOI
|
34 |
Tsong, C. C., & Lee, C. F. (2011). Asymmetric Inflation Dynamics: Evidence from Quantile Regression Analysis. Journal of Macroeconomics, 33(4), 668-680. https://doi.org/10.1016/j.jmacro.2011.08.003
DOI
|
35 |
Caporin, M., & Gupta, R. (2017). Time-varying persistence in US inflation. Empirical Economics, 53, 423-439. https://doi.org/10.1007/s00181-016-1144-y
DOI
|
36 |
Koenker, R., & Xiao, Z. (2004). Unit Root Quantile Autoregression Inference. Journal of the American Statistical Association, 99, 775-787. https://doi.org/10.1198/016214504000001114
DOI
|
37 |
Phillips, P. C. B., & Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75(2), 335-346. Retrieved June 08, 2021, from http://www.jstor.org/stable/2336182
DOI
|
38 |
Si, D. K., & Li, X. L. (2017). Mean Reversion of Inflation Rates in Seven Eastern European Countries: An Application of a Fourier Quantile Unit Root Test. The Journal of International Trade & Economic Development. Retrieved June 08, 2021, from https://www.tandfonline.com/doi/full/10.1080/09638199.2017.1350200?scroll=top&needAccess=true
|
39 |
Taylor, J. (1979). Staggered Wage Setting in a Macro Model. The American Economic Review, 69(2), 108-113. Retrieved June 08, 2021, from http://www.jstor.org/stable/1801626
|
40 |
Tran, H., Le, T., Nguyen, V., Le, D., & Trinh, N. (2021). The Impact of Financial Integration on Monetary Policy Independence: The Case of Vietnam. Journal of Asian Finance, Economics and Business, 8(2), 791-800. https://doi.org/10.13106/jafeb.2021.vol8.no2.0791
DOI
|
41 |
Willis, J. L. (2003). Implications of Structural Changes in the U.S. Economy for Pricing Behaviour and InflationDynamics. Federal Reserve Bank of Kansas City. Retrieved June 08, 2021, from https://econpapers.repec.org/article/fipfedker/y_3a2003_3ai_3aqi_3ap_3a5-27_3an_3av.88no.1.htm
|
42 |
Zhou, S. (2013). Nonlinearity and stationarity of inflation rates: Evidence from the euro-zone countries. Applied Economics, 45(7), 849-856. https://doi.org/10.1080/00036846.2011.613774
DOI
|
43 |
Perron, P. (1989). The Great Crash, the Oil-Price Shock, and the Unit Root Hypothesis. Econometrica, 57, 1361-1401. https://doi.org/10.2307/1913712
DOI
|
44 |
Adelakun, O. J. (2020). Does a Monetary Union Matter for the Degree of Inflation Persistence? The Case of the West Africa Monetary Zone (WAMZ). Studies in Economics and Econometrics, 44(1), 1-34. https://doi.org/10.1080/10800379.2020.12097354
DOI
|
45 |
Bolat, S., Tiwari, A. K., & Kyophilavong, P. (2017). Testing the Inflation Rates in MENA Countries: Evidence from Quantile Regression Approach and Seasonal Unit Root Test. Research in International Business and Finance, 42, 1089-1095. https://doi.org/10.1016/j.ribaf.2017.07.043
DOI
|
46 |
Marques, C. R. (2004). Inflation Persistence: Facts or Artefacts? ECB Working Paper No. 371. Retrieved June 08, 2021, from https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp371.pdf
|
47 |
O'Reilly, G., & Whelan, K. (2004). Has Euro-Area Inflation Persistence Changed Over Time? ECB Working Paper Series No. 335. Retrieved June 08, 2021, from https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp335.pdf
|
48 |
Hondroyiannis, G., & Lazaretou, S. (2004). Inflation Persistence During Periods of Structural Change: An Assessment Using Greek Data. ECB Working Paper No. 370. Retrieved June 08, 2021, from https://ideas.repec.org/p/bog/wpaper/13.html
|
49 |
Adaramola, O. A., & Dada, O. (2020). Impact of inflation on economic growth: evidence from Nigeria. Investment Management and Financial Innovations, 17(2), 1-13. http://dx.doi.org/10.21511/imfi.17(2).2020.01
DOI
|
50 |
Basyariah, N., Kusuma, H., & Qizam, I. (2021). Determinants of Sukuk Market Development: Macroeconomic Stability and Institutional Approach. Journal of Asian Finance, Economics and Business, 8(2), 201-211. https://doi.org/10.13106/jafeb.2021.vol8.no2.0201
DOI
|
51 |
Arize, A. C. (2011). Are inflation rates really nonstationary? New evidence from non-linear STAR framework and African Data. International Journal of Economics and Finance, 3(3), 97-108. https://doi.org/10.1016/j.iref.2012.02.002
DOI
|
52 |
Belkhouja, M., & Mootamri, I. (2016). Long memory and structural change in the G7 inflation dynamics. Economic Modelling, 54, 450-462. https://doi.org/10.1016/j.econmod.2016.01.021
DOI
|
53 |
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159-178. https://doi.org/10.1016/0304-4076(92)90104-Y
DOI
|
54 |
Bilke, L. (2004). Break in the mean and persistence of inflation: A sectoral analysis of French CPI. ECB Working Paper 463. Retrieved March 28, 2021, from https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp463.pdf.
|
55 |
Boateng, A., Lesaoana, M., Siweya, H., Belete, A., & Gil-Alana, L. (2017). Modelling persistence in the conditional mean of inflation using the ARFIMA process with GARCH and GJRGARCH innovations: The case of Ghana and South Africa. African Review of Economics and Finance, 9(2), 1-35. Retrieved April 18, 2021, from https:///C:/Users/ACER/Downloads/aref_v9_n2_a4.pdf
DOI
|