• 제목/요약/키워드: Outlet Nozzle Diameter

검색결과 33건 처리시간 0.024초

벤츄리 노즐 출구 형상과 작동 조건에 따른 캐비테이션 기포 발생 특성 연구 (Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water)

  • 오창훈;김준현;성재용
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.94-102
    • /
    • 2023
  • Three design parameters were considered in this study: outlet nozzle angle (30°, 60°, 80°), neck length (1 mm, 3 mm), and flow rate (0.5, 0.6, 0.7, 0.8 lpm). A neck diameter of 0.5 mm induced cavitation flow at a venture nozzle. A secondary transparent chamber was connected after ejection to increase bubble duration and shape visibility. The bubble size was estimated using a Gaussian kernel function to identify bubbles in the acquired images. Data on bubble size were used to obtain Sauter's mean diameter and probability density function to obtain specific bubble state conditions. The degree of bubble generation according to the bubble size was compared for each design variable. The bubble diameter increased as the flow rate increased. The frequency of bubble generation was highest around 20 ㎛. With the same neck length, the smaller the CV number, the larger the average bubble diameter. It is possible to increase the generation frequency of smaller bubbles by the cavitation method by changing the magnification angle and length of the neck. However, if the flow rate is too large, the average bubble diameter tends to increase, so an appropriate flow rate should be selected.

세라믹필터 역세정을 위한 노즐 사이즈 최적화 (The optimization of nozzle size for pulse cleaning of ceramic filter)

  • 최주홍;김진형;지화창;우량;사공경민;김영애
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.796-799
    • /
    • 2007
  • In the bench scale test unit consisting of four commercial filter elements, the traces of the transient pressure around the nozzle and overpressure in the filter cavity were measured to estimate the effect of nozzle on pulse cleaning. For the given pulse cleaning system, the convergent nozzle displayed better performance than the straight one. The optimum ratio of outlet to inside diameter of convergent nozzle was determined, which minimized the pulse gas consumption and maximized the entrainment effect. The angle and height of nozzle convergent part was also optimum operational condition, which is meaningful to the industrial applying.

  • PDF

칩 말림 방지를 위한 고압 분사 노즐 설계에 관한 연구 (A Study on Design of High Pressure Injection Nozzle for Avoiding Chip Curling)

  • 이중섭;윤지훈;정인국;송철기;서정세
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.793-798
    • /
    • 2011
  • In this study, it was grasped to the flow characteristics of cutting fluid injected by nozzle installed in high pressure holder for avoiding chip curling occurred during machining process. And for avoiding chip curling, the possibility of elimination under various chip conditions was checked. Consequently, the highest discharging pressure and velocity was shown in 150 of nozzle inflow angle. Also as nozzle outlet diameter is small, the pressure and velocity of injected flow are high. Moreover, It could be confirmed that width and thickness of chip have no direct effect on chip elimination and it is achieved by torque generated by injected cutting fluid.

원통이 붙은 평판의 응력집중완화에 대한 연구 (A Study on the Reducing of the Stress Concentration Near a Circular Hole in a Flat Plate Attached to a Cylinder)

  • 정인승
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.98-109
    • /
    • 1994
  • This paper is studied on the junction stress of the large tank and the cylindrical outlet such as a pressure vessel attached to a pope or nozzle theoretically. It is assumed that the diameter of tank is much larger than that of the nozzle cylinder, so it can be approximated that nozzle cylinder is attached to plate. As the current nozzle shape is manufactured as "Through Type" to reduce the stress concentration around the nozzle junction part of pressure vessel, a theoretical analysis on the cylinder with finite length should be performed to accomodate this fact. Each theoretical optimal values were obtained through the analysis of stress concentration caused by the variation of cylinder length and thickness, and these results were estimated by performing FEM Analysis. Analysis.

  • PDF

감압용 배수탱크내의 분기형 증기분사기의 유동특성에 관한 연구 (A Study on Flow Characteristics of Branch Type Sparger in Drain Tank for Depressurization)

  • 김광추;박만흥;박경석
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.356-367
    • /
    • 2001
  • A numerical analysis on branch type sparger in drain tank for depressurization is performed to investigate the flow characteristics due to the change of design factor. As the result of this study, sparger\\`s flow resistance coefficient(K) is 3.53 at the present design condition when engineering margin for surface roughness is considered as 20%, and flow ratio into branch pipe ($Q_s/Q_i$) is 0.41. The correlation for calculating flow resistance coefficients as design factor is presented. Flow resistance coefficient is increased as section area ratio of branch pipe for main pipe and outlet nozzle diameter of main pipe decreasing, but the effects of branch angle and inlet flow rate of main pipe are small. As the change rate of ($Q_s/Q_i$)becomes larger, the change rate of flow resistance coefficient increases. The rate of pressure loss has the largest change as section area ratio changing. The condition of maximum flow resistance in sparger is when the outlet nozzle diameter ratio of main pipe ($D_e/D_i$) is 0.167, the section area ratio ($A_s/A_i$) is 0.1 and the branch angle ($\alpha$) is 55^{\circ}$.

  • PDF

증기-증기 이젝터를 적용한 OTEC 시스템 성능의 수치적 분석 (The numerical analysis of performance of OTEC system with vapor-vapor ejector)

  • 윤정인;손창효;예병효;하수정;최인수;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, the Ocean Thermal Energy Conversion(OTEC) with vapor-vapor ejector is proposed newly. At this OTEC system, a vapor-vapor ejector is installed at inlet of condenser. The vapor-vapor ejector plays a very important role in increasing of the production work of low-stage turbine throughout the decrement of outlet pressure of ejector. The performance analysis is conducted for optimizing the system with HYSYS program. The procedure of performance analysis consists of outlet pressure of high turbine, the mass ratio of working fluid at separator, total working fluid rate, and nozzle diameters of vapor-vapor ejector. The main results is summarized as follows. The nozzle diameter is most important thing in this study. When each nozzle diameter of vapor-vapor ejector is 10 mm, the efficiency of OTEC system with vapor-vapor ejector shows the highest value. So it is necessary to set the optimized nozzle diameters of vapor-vapor ejector for achieving the high efficiency OTEC power system.

디스크형 유체역학적 방향제어 시스템 성능해석 및 설계 인자 민감도 분석 (Performance and Sensitivity Analysis of Disk-type Fluidic Control System)

  • 조민경;한두희;성홍계;최현영
    • 한국추진공학회지
    • /
    • 제20권3호
    • /
    • pp.103-110
    • /
    • 2016
  • 유동 제어 시스템에 적용을 위한 디스크형 유체 소자 밸브의 성능해석 알고리즘을 수립하고 설계 변수들에 대한 민감도 분석을 진행하였다. 유입 유량 발생에 따른 챔버의 압력 변화와 디스크 거동 변화를 예측 하였고 설계 변수들의 민감도 분석을 위해 Scattering plot 기법을 활용하였다. 민감도 분석결과 유동 마하수에 가장 큰 민감도는 갖는 변수는 노즐 출구이며 밸브 응답 시간과 노즐 출구 모두에서 큰 민감도를 갖는 변수는 유입 유량임을 확인하였다.

圓筒이 붙은 平板의 應力解析 (Stress Analysis near a Circular Hole in a Flat Plate Attached to a Cyinder -The Key Subject is the Change of the Cylindrical Shell-Length-)

  • 정인승;이대희;윤갑영
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.770-778
    • /
    • 1986
  • This paper is studied on the Junctiion of the large tank and the cylinderical outlet such as a pressure vessel attached a pipe or nozzle theoretically. It is assumed that the diameter of tank is much larger than that of the nozzle, so it can be approximated that nozzle is attached to plate. The analysis procedure can be viewed as the solution of interdependent subproblems: (a) the stress analysis of the cylinderical shell(nozzle), (b) the plane-stress analysis of the plate membrane problem, and (c) the analysis of the transverse bending deformation in the plate. On the procedure of (a), the Flugge formula are used, and the variables are the length and the ratio of the thickness to the radius of cylinderical shell. The solutions of thess problems are interrelated in the total solution through continuity and equilibrium conditions at the interface of middle planes of the plate and cylinderical shell.

폴리우레탄 발포 노즐 형상이 혼합 성능에 미치는 영향 (Influences of Polyurethane Nozzle Shape on Mixing Efficiency)

  • 김도연;이태경;정해도;김형재
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.31-35
    • /
    • 2016
  • For reaction injection molding (RIM) polyurethane was mixed in the mixing head by impingement mixing, injected into the mold, and cured quickly, as soon as the mold is filled. The shape of the nozzle in the mixing head is critical to improve the quality of polyurethane. To achieve homogeneous mixing, an intensive turbulence energy in the mixing nozzle is essential. In this study, a mixing nozzle for RIM was designed, and mixing efficiency was investigated based on experiment. Experiments were conducted with different combinations of nozzle tips and exit diameter to measure the mixing efficiency by measuring jet force and investigating mixing image with high speed camera. Jet force increased gradually and reaches steady state conditions. The jet force depended on shape of nozzle tip and outlet sizes. These results suggest that optimized nozzle configurations are necessary for high efficiency mixing with RIM.

워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석 (A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet)

  • 곽청렬;신보성;고정상;김문정;유찬주;윤단희
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.