• Title/Summary/Keyword: Outlet

Search Result 2,623, Processing Time 0.025 seconds

Analysis of the Characteristics of Reformer for the Application of Hydrogen Fuel Cell Systems to LNG Fueled Ships (LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • In this study, we investigated the characteristics of the process of hydrogen production using boil-of gas (BOG) generated from an LNG-fueled ship and the application of hydrogen fuel cell systems as auxiliary engines. In this study, the BOG steam reformer process was designed using the UniSim R410 program, and the reformer outlet temperature, pressure, and the fraction and consumption of the product according to the steam/carbon ratio (SCR) were calculated. According to the study, the conversion rate of methane was 100 % when the temperature of the reformer was 890 ℃, and maximum hydrogen production was observed. In addition, the lower the pressure, the higher is the reaction activity. However, higher temperatures have led to a decrease in hydrogen production owing to the preponderance of adverse reactions and increased amounts of water and carbon dioxide. As SCR increased, hydrogen production increased, but the required energy consumption also increased proportionally. Although the hydrogen fraction was the highest when the SCR was 1.8, it was confirmed that the optimal operation range was for SCR to operate at 3 to prevent cocking. In addition, the lower the pressure, the higher is the amount of carbon dioxide generated. Furthermore, 42.5 % of the LNG cold energy based on carbon dioxide generation was required for cooling and liquefaction.

SWAT model calibration/validation using SWAT-CUP III: multi-site and multi-variable model analysis (SWAT-CUP을 이용한 SWAT 모형 검·보정 III: 다중 관측 지점 및 변수를 고려한 분석)

  • Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1143-1157
    • /
    • 2020
  • In this study, a criteria for the SWAT model calibration method in SWAT-CUP which considers multi-site and multi-variable observations was presented. For its application, the SWAT model was simulated using long-term observed flow, soil moisture, and evapotranspiration data in Yongdam study watershed, investigating the hydrological runoff characteristics and water balance in the water cycle analysis. The model was calibrated with different parameter values for each sub-watershed in order to reflect the characteristics of multiple observations through one-by-one calibration, appropriate settings of model simulation run/iteration number (1,000 simulation runs in the first iteration and then 500 simulation runs for the following iterations), and executions of partial and all run in SWAT-CUP. The flow simulation results of watershed outlet point, ENS 0.85, R2 0.87, and PBIAS -7.6%, were compared with the analysis results (ENS 0.52, R2 0.54, and PBIAS -22.4%) applied in the other batch (i.e., non one-by-one) calibration approach and showed better performances of proposed method. From the simulation results of a total of 15 years, it was found that the total runoff (streamflow) and evapotranspiration rates from precipitation are 53 and 39%, and the ratio of surface runoff and baseflow (i.e., sum of lateral and return flow, and recharge deep aquifer) are 35 and 65%, respectively, in Yongdam watershed. In addition, the analytical amount of available water (i.e., water yield), including the total annual streamflow (daily average 21.8 m3/sec) is 6.96 billion m3 per year (about 540 to 900 mm for sub-watersheds).

A study on breakthrough characteristics of ion exchange bed with H- and ETAH-form resins for cation exchange in NH3 and ETA solution including trace NaCl (미량의 NaCl을 포함하는 NH3 및 ETA 용액에서 H 및 ETAH 형 수지에 대한 이온교환 파과 특성 연구)

  • Ahn, Hyun-Kyoung;Kim, Youn-Su;Park, Byung-Gi;Rhee, In-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2021
  • Ion exchange (IX) performance on the exchanger bed is essentially evaluated for the generation of ultrapure water in electronics and chemical industries and for the corrosion control in nuclear power plants. The breakthrough characteristics of IX bed with multi-component were investigated with both cation- and mixed-IX beds of H- and ETAH-form for four kinds of cation exchange resins by using the combined solution of ethanolamine (ETA) and ammonia (NH3) at trace NaCl. Unlike major components (ETAH+ and NH4+ ), the phenomena of breakthrough and overshooting at bed outlet were not observed by Na+ over the test period (> 3 times theoretical exchange capacity of IX bed). The breakthrough from H-form resin bed was sequentially reached by ETAH+ and NH4+, while the overshooting was observed for ETAH+ at the breakthrough of NH4+. NH4+ was 51.5% higher than ETAH+ in terms of the relative selectivity determined with the width of breakthrough zone. At the increased concentration of Na+ at bed inlet, the selectivity and the overshooting were decreased and increased, respectively. Na+ leakage was higher from ETAH-form resin bed and was not identical for four kinds of cation-exchange resins, which may be reduced by improving the intrinsic property of IX resin.

Use of the 20th Presidential Election Issues on YouTube: A Case Study of 'Daejang-dong Development Project' (유튜브 이용자의 제20대 대통령선거 이슈 이용: '대장동 개발 사업' 사례를 중심으로)

  • Kim, Chunsik;Hong, Juhyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • There are three focuses in the paper. Firstly, the study identified what channels were most viewed by YouTube users to watch the 'Daejang-dong scandal,' which was the most powerful agenda to influence the candidate preference among voters during the 20th presidential election. Secondly, the study analyzed whether the political tone of the first videos was in line with that of the subsequent videos. Finally, we compared the sentiment of comments on the first and subsequent videos. The results showed that TBS 'News Factory' and 'TV Chosun News' represented liberal and conservative factions, respectively. Secondly, the political tone of channels that were viewed subsequently was neutral, but the conservative channel users left more negative comments and that was significant statistically. In addition, about 80% of the conservative and liberal channel users shared the same political tendency with the channel they watched first, and more than 90% of the comments left at the subsequent videos in line with that of at the first news. Based on these results, the study concluded that the voters tended to seek political news that was similar with their political ideology, and it was considered a sort of echo chamber phenomenon on the YouTube. The study suggests that the performance of high-quality journalism by traditional news outlet might contribute to decrease the negative influence of political contents on YouTube users.

The Cultural Circuit of Capital and the Evolution of Regional Development Policy in Korea: A New Form of Managerialist Governance in Action? (자본의 문화적 순환과 한국 지역발전 정책의 진화: 새로운 관리주의 거버넌스 형태의 등장?)

  • Lee, Jae-Youl
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.237-253
    • /
    • 2022
  • This article offers an account of how regional development policy in Korea has evolved under the influence of actor-networks comprising the cultural circuit of soft capitalism. In so doing, the roles played by transnational actor-networks forged between global consulting firms and national business media are emphasized. For this discussion, the waning of spatial Keynesianism in the country is contextualized in the first place, with particular attention to changing planning goals of key regional development policies including consultancies, influential policy gurus (e.g., Michael Porter and Richard Florida), and local business media outlet Maekyong are found to be key movers and shakers in the transition. These empirical findings call for striking a balance between dominant structuralist accounts and emerging actor-oriented approaches, and also help shed a new light on the dualistic conceptualization of managerialist and entrepreneurial governance in a way that the latter may be a new form of the former.

Optimum conditions for artificial neural networks to simulate indicator bacteria concentrations for river system (하천의 지표 미생물 모의를 위한 인공신경망 최적화)

  • Bae, Hun Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1053-1060
    • /
    • 2021
  • Current water quality monitoring systems in Korea carried based on in-situ grab sample analysis. It is difficult to improve the current water quality monitoring system, i.e. shorter sampling period or increasing sampling points, because the current systems are both cost- and labor-intensive. One possible way to improve the current water quality monitoring system is to adopt a modeling approach. In this study, a modeling technique was introduced to support the current water quality monitoring system, and an artificial neural network model, the computational tool which mimics the biological processes of human brain, was applied to predict water quality of the river. The approach tried to predict concentrations of Total coliform at the outlet of the river and this showed, somewhat, poor estimations since concentrations of Total coliform were rapidly fluctuated. The approach, however, could forecast whether concentrations of Total coliform would exceed the water quality standard or not. As results, modeling approaches is expected to assist the current water quality monitoring system if the approach is applied to judge whether water quality factors could exceed the water quality standards or not and this would help proper water resource managements.

Emission Rates of Biogenic Volatile Organic Compounds from Various Tree Species in Korea (II): Major Species in Urban Forests (국내 수종별 BVOCs 방출량(II): 도시 숲 주요 수종)

  • Hanna, Chang;Jounga, Son;Juwan, Kim;Junhyuk, Kim;Yeongseong, Kim;Won-Sil, Choi;Young-Kyu, Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.490-501
    • /
    • 2022
  • In this study, the isoprene and terpene emissions from 32 major urban tree species were investigated. We conducted sampling using a dynamic enclosure system between June and July 2021. Seedlings aged < three years were enclosed in a chamber consisting of a 400 L transparent Tedlar bag. The air flow from the outlet of the chamber was sampled using Tenax-filled sorbent tubes under standard conditions (temperature: 30°C; PAR: 1,000 μmol/m2/sec). A thermal desorption gas chromatography/mass spectrometry system was used to analyze the following 38 biogenic volatile organic compounds: isoprene, monoterpenes, sesquiterpenes, oxygenated monoterpenes, and oxygenated sesquiterpenes. Isoprene emitters included Quercus mongolica, Salix koreensis, Robinia pseudoacacia, and Salix chaenomeloides. Monoterpene emitters included Pinus strobus, Cedrela sinensis, and Cercis chinensis. The monoterpene emission profiles were dominated by á-pinene, myrcene, camphene, and limonene. The predominant oxygenated monoterpene and oxygenated sesquiterpene were eucalyptol and caryophyllene oxide, respectively. For all species, the contributions of sesquiterpenes and oxygenated sesquiterpenes were relatively low.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

Experimental Evaluation of Developed Ultra-low NOx Coal Burner Using Gas in a Bench-scale Single Burner Furnace (Bench-scale 연소로에서 가스 혼소를 통한 초 저 NOx 석탄 버너 개발 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This study developed and tested an ultra-low NOx burner in an 80 kW combustion furnace. The experiment was conducted in an 80 kW single burner combustion furnace with changing the swirl numbers, total equivalence ratios, and primary/secondary oxidizer ratios. In this study, liquefied natural gas (LNG) was used as an auxiliary fuel to significantly reduce NOx production. In a thermal power plant, the amount of NOx generated during coal combustion is about 300 ppm. However, using the burner tested in this study, it was possible to reduce the amount of NOx generated via LNG co-firing to 40 ppm. If the input amount of the primary oxidizer is enough for the gas to be completely combusted and the gas and coal are added simultaneously, the combusted gas forms a high-temperature region at the burner outlet and volatilizes the coal. As a result, the N contained in the devolatilized coal is discharged. Therefore, when the coal is subsequently burned, the amount of NOx produced decreases because there is almost no N remaining in the coal. If a thermal power plant burner is developed based on the results of this study, it is expected that the NOx generation will be significantly lower in the early stage of combustion.

Experimental and model study on the mixing effect of injection method in UV/H2O2 process

  • Heekyong Oh;Pyonghwa Jang;Jinseok Hyung;Jayong Koo;SungKyu Maeng
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.129-140
    • /
    • 2023
  • The appropriate injection of H2O2 is essential to produce hydroxyl radicals (OH·) by mixing H2O2 quickly and exposing the resulting H2O2 solution to UV irradiation. This study focused on evaluating mixing device of H2O2 as a design factor of UV/H2O2 AOP pilot plant using a surface water. The experimental investigation involved both experimental and model-based analyses to evaluate the mixing effect of different devices available for the H2O2 injection of a tubular hollow pipe, elliptical type of inline mixer, and nozzle-type injection mixer. Computational fluid dynamics analysis was employed to model and simulate the mixing devices. The results showed that the elliptical type of inline mixer showed the highest uniformity of 95%, followed by the nozzle mixer with 83%, and the hollow pipe with only 18%, after passing through each mixing device. These results indicated that the elliptical type of inline mixer was the most effective in mixing H2O2 in a bulk. Regarding the pressure drops between the inlet and outlet of pipe, the elliptical-type inline mixer exhibited the highest pressure drop of 15.8 kPa, which was unfavorable for operation. On the other hand, the nozzle mixer and hollow pipe showed similar pressure drops of 0.4 kPa and 0.3 kPa, respectively. Experimental study showed that the elliptical type of inline and nozzle-type injection mixers worked well for low concentration (less than 5mg/L) of H2O2 injection within 10% of the input value, indicating that both mixers were appropriate for required H2O2 concentration and mixing intensity of UV/ H2O2 AOP process. Additionally, the elliptical-type inline mixer proved to be more stable than the nozzle-type injection mixer when dealing with highly concentrated pollutants entering the UV/H2O2 AOP process. It is recommended to use a suitable mixing device to meet the desired range of H2O2 concentration in AOP process.