• Title/Summary/Keyword: Outer rotor

Search Result 176, Processing Time 0.035 seconds

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor with Cooling Blades (냉각날개를 갖는 외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Wang, Se-Myung;Shim, Ho-Kyung;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.772-779
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type BLDC motor are numerically analyzed using three-dimensional turbulence modeling. On the rotor of the BLDC motor, cooling blades and cooling holes are existed for the enhanced cooling performances. Rotating the blades and holes generates axial air flow streaming into inner rotor side and passing through stator slots, which cools down stator by forced convection. Operating tests are performed and the numerical temperature fields are found to be in good agreement with experimental results. A new design of the BLDC motor has also been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes and cooling blades, and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

Dynamic Analysis of Rotor Systems Considering Ball Bearing Contact Mechanism (볼 베어링의 접촉 메커니즘을 고려한 회전체 시스템의 동적 해석)

  • Kim, YoungJin;Lee, Jongmahn;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1535-1540
    • /
    • 2013
  • We propose a finite element modeling method considering the ball bearing contact mechanism, and the developed method was verified through experimental and analytical results of inner and outer race-type rotor systems. A comparison of the proposed method with conventional method reveals that there is little difference in the results of the inner race-type rotor system, but there are considerable differences in the results of the outer race-type rotor system such that predictions of greater accuracy can be made. Therefore, the proposed method can be used for accurately predicting the dynamic characteristics of an outer race-type rotary machine.

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor (외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Lee, Kwan-Soo;Wang, Se-Myung;Shim, Ho-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2518-2523
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type of a BLDC motor are numerically analyzed using three-dimensional turbulence modeling. In an advance design of BLDC motor, cooling blades and holes are preferred for the enhanced cooling performances. Rotating the blades and holes generates axial air flow passing through stator slots, which cools down stator by forced convection. For the present study, a new design of the BLDC motor has been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes, and cooling blades and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

  • PDF

Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (1) - Magnetic Field Analysis and Electrical Parameters Derivation using Electromagnetic Transfer Relations Theorem - (전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (1) - 전자기 전달관계 기법을 이용한 자계특성해석 및 회로정수 도출 -)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2179-2189
    • /
    • 2010
  • This paper deals with analytical techniques for performance evaluation of small scaled wind power generator with outer permanent magnet rotor. In part (1), using transfer relations theorem, magnetic field distribution characteristics by PM and armature reaction field are derived. Moreover, electrical parameters such as back-EMF, inductance and resistance are calculated from the obtained field characteristic equations. The proposed analytical techniques are validated by nonlinear finite element method using commercial software 'Maxwell' and performance experiments of the manufactured generator. In part (2), generating characteristics analysis such as constant speed characteristics and constant resistive load characteristics, and performance evaluation according to variation of wind speed will be accomplished using the derived electrical parameters.

Drive Characteristics of Outer-rotor Type SRM Considering Dual Operating Modes (이중운전조건을 고려한 외전형 SRM의 구동특성)

  • Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.903-909
    • /
    • 2014
  • As a direct drive type washing machine requires two operating modes, washing and spinning modes, a design of the motor with high efficiency in each mode is not applicable to a conventional procedure. To achieve the requirements, a multi-pole outer rotor type switched reluctance motors are considered. To select a suitable motor type for the application, a static toque is compared based on the FEM analysis. The selected type is obtained for high and wide toque than other types of the motor. Further, the pole shape and arc are optimized to meet the required torque and torque ripple. To verify the proposed structure, the prototype is designed and manufactured. And the simulation and experimental results verify the validity of the proposed structure.

Effect of Axial-Layered Permanent-Magnet on Operating Temperature in Outer Rotor Machine

  • Luu, Phuong Thi;Lee, Ji-Young;Kim, Ji-Won;Chun, Yon-Do;Oh, Hong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2329-2334
    • /
    • 2018
  • This paper discusses the thermal effect of the number of permanent-magnet (PM) layers in an outer rotor machine. Depending on the number of axial-layer of PM, the operating temperature is compared analytically and experimentally. The electromagnetic analysis is performed using 3-dimensional time varying finite element method to get the heat sources depending on axial-layered PM models. Then thermal analysis is conducted using the lumped-parameter-thermal-network method for each case. Two outer rotor machines, which have the different number of axial-layer of PM, are manufactured and tested to validate the analysis results.

A Study on Tooth Design Program Development of Gerotor Pump/Motor (지로터 펌프/모터의 치형 설계 프로그램 개발에 관한 연구)

  • 장주섭;이종원;한동철;조명래
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.100-106
    • /
    • 1996
  • Gerotor pumps and motors are widely used in lubrication and hydraulic actuator systems. Compared with internal gear pumps and motors, they have many advantages. However, the gerotor profiles have not been suff'lciently analyzed theoretically. Therefore, it is very difficult for designer to decide the specifications of the gemtor profiles, and calculation of flow rate and minimum distance of clearance in the contact point of inner and outer rotor is not yet confirmed. In this paper, when we design inner and outer rotor concurently, we have analyzed the gerotor profiles and displayed the calculated results such as flow rate, minimum distance between inner and outer rotor and gerotor profiles.

A Study on Tootk Design Program Development of Gerotor Pump/Motor (지로터 펌프/모터의 치형설계 프로그램 개발에 관한 연구)

  • 장주섭;이종원;한동철;조명래
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.17-23
    • /
    • 1996
  • Gerotor Pump and Motors are widely used in lubrication and hydraulic actuator systems, These have many advantage compared with internal gear pump and motors, But the gerotor profile have not been sufficiently analyzed theoretically. So it is vary difficult for designer to decide the specifications of the gerotor profile, and it is not yet confirmed to calculating flow rate and minimum distance of clearance in the contact point of inner and outer rotor. In this paper, When we design inner and outer rotor concurently, We have analyzed the gerotor and displayed the calculated results such as flow rate, minumum distance between inner and outer rotor and gerotor profiles

  • PDF

Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (2) - Electromagnetic Losses and Performance Analysis - (전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (2) - 전자기 손실 해석 및 성능 평가 -)

  • Ko, Kyoung-Jin;Jang, Seok-Myeong;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.50-62
    • /
    • 2011
  • In this paper, analytical techniques for performance characteristics analysis of wind power generator with outer permanent magnet rotor are proposed. Furthermore, the proposed analytical techniques are validated by performance experiments of the manufactured generator. In this part, characteristic equations of losses such as copper loss, core loss are derived. Using the derived loss characteristic equations, electrical parameters obtained in [15] and d-q axes method, constant load and constant speed characteristics of wind power generator are analyzed. And then, to analyze performance of wind power system according to wind speed, d-q analysis model considering wind turbine characteristics is proposed. Finally, the obtained performance characteristics results are validated in comparison with those by experiments.

Optimal Design of Ultracentrifuge Composite Rotor by Structral Analysis (초고속 원심분리기 복합재 로터의 해석 및 최적설계)

  • 박종권;김영호;하성규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.130-136
    • /
    • 1998
  • A procedure of stress and strength analysis has been proposed for the centrifuge rotor of composite materials of quasi-isotropic laminates. The goal in this study is to maximize the allowable rotating speed, that is, to minimize maximum strength ratio with the given path length by changing the geometric parameter-outer radius and ply angles in quasi-isotropic laminates. Optimum values of the geometric parameter-outer radius and ply angles are obtained by multilevel optimization. All the geometric dimensions and stresses are normalized such that the result can be extended to a general case. Two dimensional analysis at each cross section with an elliptic tube hole subjected to internal hydrostatic pressures by samples as well as the centrifugal body forces has been performed along the height to calculate the stress distribution with the plane stress assumption, and Tsai-Wu failure criterion is used to calculate the strength ratio. The maximum allowable rotating speed can be increased by changing the radii of the outer surface along the height with the maximum strength ratio under the unit value : The optimal number of ply angles maximizing the allowable rotating speed in quasi-isotropic laminates is found to be the half number of tube hole, and the optimal laminate rotation angle is the half of $[{\pi}/m]$. A $[{\pi}/3]$ laminate, for instance, is stronger than a $[{\pi}/4]$ laminate for the centrifuge rotor of 6 tube hole number even though they have the same stiffness.

  • PDF